Convergence acceleration technique for $zeta(4)$ (or $eta(4)$) via creative telescoping?
$begingroup$
Question
- Is it already known whether the $zeta(4):=sum_{n=1}^{infty}1/n^4$ accelerated convergence series $(1)$, proved for instance in [1, Corollaire 5.3], could be obtained by a similar technique to the ones explained by Alf van der Poorten in [2, section 1] for $zeta(3)$ and $zeta(2)$?
$$zeta(4)=frac{36}{17}sum_{n=1}^{infty}frac{1}{n^{4}binom{2n}{n}}.tag{1}$$
- (a) In other words, does there exist a pair of functions $F(n,k), G(n,k)$ obeying equation
$$F(n+1,k)-F(n,k)=G(n,k+1)-G(n,k)tag{$ast$}$$
from which $(1)$ can be proved? That is, is it possible to transform the defining series for $zeta(4):=sum_{n=1}^{infty}1/n^4$ by means of the Wilf-Zeilberger method (or the Markov-WZ Method) into the faster series $(1)$? (b) Most likely there isn't any such a pair $(F, G)$, but I do not have the means to use these methods on my own.
Short description of section 1 of Alf van der Poorten's paper
The defining series for $zeta(3):=sum_{n=1}^{infty}1/n^3$ and $zeta(2):=sum_{n=1}^{infty}1/n^2$ are accelerated resulting in
begin{equation*}
zeta (2)=3sum_{n=1}^{infty }
frac{1}{n^{2}binom{2n}{n}},tag{2}
end{equation*}
begin{equation*}
zeta (3)=frac{5}{2}sum_{n=1}^{infty }
frac{(-1)^{n-1}}{n^{3}binom{2n}{n}}tag{3}.
end{equation*}
For instance, $(3)$ follows from the identity
begin{equation*}
sum_{n=1}^{N}frac{1}{n^{3}}-2sum_{n=1}^{N}frac{left( -1right) ^{n-1}}{n^{3}binom{2n}{n}}=sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{N+k}{k}binom{N}{k}}-sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{2k}{k}}tag{4},
end{equation*}
by letting $Nrightarrow infty $ and noticing that
begin{equation*}
lim_{Ntoinfty}sum_{k=1}^{infty}frac{(-1)^{k}}{2k^{3}binom{N+k}{k}binom{N}{k}}=0.
end{equation*}
Equality $(4)$ can be explained as follows:
- Write
begin{equation*}
X_{n,k}=frac{(-1)^{k-1}}{k^{2}binom{n+k}{k}binom{n-1}{k}},qquad D_{n,k}=frac{(-1)^{k}}{n^{2}binom{n+k}{k}binom{n-1}{k}}qquad k<n.
end{equation*}
- Notice that $$X_{n,k}=D_{n,k-1}-D_{n,k}.tag{5}$$ Hence
begin{eqnarray*}
sum_{k=1}^{n-1}frac{X_{n,k}}{n} &=&sum_{k=1}^{n-1}left( frac{D_{n,k-1}}{
n}-frac{D_{n,k}}{n}right) =frac{D_{n,0}}{n}-frac{D_{n,n-1}}{n} \
&=&frac{1}{n^{3}}-2frac{left( -1right) ^{n-1}}{n^{3}binom{2n}{n}},qquadfrac{D_{n,0}}{n} =frac{1}{n^{3}},quad frac{D_{n,n-1}}{n}=2frac{
left( -1right) ^{n-1}}{n^{3}binom{2n}{n}}
end{eqnarray*}
- Sum over $k$, $1leq
kleq n-1$
begin{equation*}
sum_{k=1}^{n-1}X_{n,k}=sum_{k=1}^{n-1}left( D_{n,k-1}-D_{n,k}right)
=D_{n,0}-D_{n,n-1}.
end{equation*}
- Now, summing over $n$, $1leq nleq N$, and noticing that
begin{equation*}
frac{X_{n,k}}{n}=E_{n,k}-E_{n-1,k},qquad E_{n,k}=frac{(-1)^{k}}{2k^{3}binom{n+k}{k}binom{n}{k}},tag{6}
end{equation*}
we obtain
begin{equation*}
sum_{k=1}^{N-1}sum_{n=k+1}^{N}frac{X_{n,k}}{n}=sum_{k=1}^{N-1}
sum_{n=k+1}^{N}left( E_{n,k}-E_{n-1,k}right) =sum_{k=1}^{N}left(
E_{N,k}-E_{k,k}right).
end{equation*}
- So, on the one hand
begin{eqnarray*}
sum_{n=1}^{N}sum_{k=1}^{n-1}frac{X_{n,k}}{n} &=&sum_{n=1}^{N}frac{1}{
n^{3}}-2sum_{n=1}^{N}frac{left( -1right) ^{n-1}}{n^{3}binom{2n}{n}},tag{7}
end{eqnarray*}
and on the other hand
begin{eqnarray*}
sum_{n=1}^{N}sum_{k=1}^{n-1}frac{X_{n,k}}{n}
&=&sum_{k=1}^{N}E_{N,k}-sum_{k=1}^{N}E_{k,k} \
&=&sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{N+k}{k}binom{N}{k}}
-sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{2k}{k}}.tag{8}
end{eqnarray*}
The identity $(4)$ follows.
Remarks
- The combination of equations $(5)$ and $(6)$ forms an identity of the form $(ast)$, which is equation $(6.1.2)$ of [3, chapter 6] (Zeilberger's Algorithm).
- As for $(2)$, [2, section 1] actually explains how to accelerate $eta(2):=sum_{n=1}^{infty }(-1)^{n-1}/n^{2}$ and obtain $(2)$, using the
relation $eta(s) = left(1-2^{1-s}right) zeta(s)$. As such, if feasible, I expect that accelerating $eta(4)$ might be easier than $zeta(4)$.
References
- Henri Cohen, Généralisation d'une Construction de R. Apéry
- Alfred van der Poorten, Some wonderful formulae... Footnotes to Apery's proof of the irrationality of $zeta(3)$
- Marko Petkovsek, Herbert Wilf, Doron Zeilberger, A = B
sequences-and-series number-theory summation experimental-mathematics convergence-acceleration
$endgroup$
add a comment |
$begingroup$
Question
- Is it already known whether the $zeta(4):=sum_{n=1}^{infty}1/n^4$ accelerated convergence series $(1)$, proved for instance in [1, Corollaire 5.3], could be obtained by a similar technique to the ones explained by Alf van der Poorten in [2, section 1] for $zeta(3)$ and $zeta(2)$?
$$zeta(4)=frac{36}{17}sum_{n=1}^{infty}frac{1}{n^{4}binom{2n}{n}}.tag{1}$$
- (a) In other words, does there exist a pair of functions $F(n,k), G(n,k)$ obeying equation
$$F(n+1,k)-F(n,k)=G(n,k+1)-G(n,k)tag{$ast$}$$
from which $(1)$ can be proved? That is, is it possible to transform the defining series for $zeta(4):=sum_{n=1}^{infty}1/n^4$ by means of the Wilf-Zeilberger method (or the Markov-WZ Method) into the faster series $(1)$? (b) Most likely there isn't any such a pair $(F, G)$, but I do not have the means to use these methods on my own.
Short description of section 1 of Alf van der Poorten's paper
The defining series for $zeta(3):=sum_{n=1}^{infty}1/n^3$ and $zeta(2):=sum_{n=1}^{infty}1/n^2$ are accelerated resulting in
begin{equation*}
zeta (2)=3sum_{n=1}^{infty }
frac{1}{n^{2}binom{2n}{n}},tag{2}
end{equation*}
begin{equation*}
zeta (3)=frac{5}{2}sum_{n=1}^{infty }
frac{(-1)^{n-1}}{n^{3}binom{2n}{n}}tag{3}.
end{equation*}
For instance, $(3)$ follows from the identity
begin{equation*}
sum_{n=1}^{N}frac{1}{n^{3}}-2sum_{n=1}^{N}frac{left( -1right) ^{n-1}}{n^{3}binom{2n}{n}}=sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{N+k}{k}binom{N}{k}}-sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{2k}{k}}tag{4},
end{equation*}
by letting $Nrightarrow infty $ and noticing that
begin{equation*}
lim_{Ntoinfty}sum_{k=1}^{infty}frac{(-1)^{k}}{2k^{3}binom{N+k}{k}binom{N}{k}}=0.
end{equation*}
Equality $(4)$ can be explained as follows:
- Write
begin{equation*}
X_{n,k}=frac{(-1)^{k-1}}{k^{2}binom{n+k}{k}binom{n-1}{k}},qquad D_{n,k}=frac{(-1)^{k}}{n^{2}binom{n+k}{k}binom{n-1}{k}}qquad k<n.
end{equation*}
- Notice that $$X_{n,k}=D_{n,k-1}-D_{n,k}.tag{5}$$ Hence
begin{eqnarray*}
sum_{k=1}^{n-1}frac{X_{n,k}}{n} &=&sum_{k=1}^{n-1}left( frac{D_{n,k-1}}{
n}-frac{D_{n,k}}{n}right) =frac{D_{n,0}}{n}-frac{D_{n,n-1}}{n} \
&=&frac{1}{n^{3}}-2frac{left( -1right) ^{n-1}}{n^{3}binom{2n}{n}},qquadfrac{D_{n,0}}{n} =frac{1}{n^{3}},quad frac{D_{n,n-1}}{n}=2frac{
left( -1right) ^{n-1}}{n^{3}binom{2n}{n}}
end{eqnarray*}
- Sum over $k$, $1leq
kleq n-1$
begin{equation*}
sum_{k=1}^{n-1}X_{n,k}=sum_{k=1}^{n-1}left( D_{n,k-1}-D_{n,k}right)
=D_{n,0}-D_{n,n-1}.
end{equation*}
- Now, summing over $n$, $1leq nleq N$, and noticing that
begin{equation*}
frac{X_{n,k}}{n}=E_{n,k}-E_{n-1,k},qquad E_{n,k}=frac{(-1)^{k}}{2k^{3}binom{n+k}{k}binom{n}{k}},tag{6}
end{equation*}
we obtain
begin{equation*}
sum_{k=1}^{N-1}sum_{n=k+1}^{N}frac{X_{n,k}}{n}=sum_{k=1}^{N-1}
sum_{n=k+1}^{N}left( E_{n,k}-E_{n-1,k}right) =sum_{k=1}^{N}left(
E_{N,k}-E_{k,k}right).
end{equation*}
- So, on the one hand
begin{eqnarray*}
sum_{n=1}^{N}sum_{k=1}^{n-1}frac{X_{n,k}}{n} &=&sum_{n=1}^{N}frac{1}{
n^{3}}-2sum_{n=1}^{N}frac{left( -1right) ^{n-1}}{n^{3}binom{2n}{n}},tag{7}
end{eqnarray*}
and on the other hand
begin{eqnarray*}
sum_{n=1}^{N}sum_{k=1}^{n-1}frac{X_{n,k}}{n}
&=&sum_{k=1}^{N}E_{N,k}-sum_{k=1}^{N}E_{k,k} \
&=&sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{N+k}{k}binom{N}{k}}
-sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{2k}{k}}.tag{8}
end{eqnarray*}
The identity $(4)$ follows.
Remarks
- The combination of equations $(5)$ and $(6)$ forms an identity of the form $(ast)$, which is equation $(6.1.2)$ of [3, chapter 6] (Zeilberger's Algorithm).
- As for $(2)$, [2, section 1] actually explains how to accelerate $eta(2):=sum_{n=1}^{infty }(-1)^{n-1}/n^{2}$ and obtain $(2)$, using the
relation $eta(s) = left(1-2^{1-s}right) zeta(s)$. As such, if feasible, I expect that accelerating $eta(4)$ might be easier than $zeta(4)$.
References
- Henri Cohen, Généralisation d'une Construction de R. Apéry
- Alfred van der Poorten, Some wonderful formulae... Footnotes to Apery's proof of the irrationality of $zeta(3)$
- Marko Petkovsek, Herbert Wilf, Doron Zeilberger, A = B
sequences-and-series number-theory summation experimental-mathematics convergence-acceleration
$endgroup$
$begingroup$
what is the question?
$endgroup$
– Masacroso
May 14 '17 at 19:42
$begingroup$
@Masacroso In short, can (1) be derived from an identity similar to (4)?
$endgroup$
– Américo Tavares
May 14 '17 at 19:45
1
$begingroup$
See also this fast converging series en.wikipedia.org/wiki/…
$endgroup$
– reuns
May 19 '17 at 20:53
add a comment |
$begingroup$
Question
- Is it already known whether the $zeta(4):=sum_{n=1}^{infty}1/n^4$ accelerated convergence series $(1)$, proved for instance in [1, Corollaire 5.3], could be obtained by a similar technique to the ones explained by Alf van der Poorten in [2, section 1] for $zeta(3)$ and $zeta(2)$?
$$zeta(4)=frac{36}{17}sum_{n=1}^{infty}frac{1}{n^{4}binom{2n}{n}}.tag{1}$$
- (a) In other words, does there exist a pair of functions $F(n,k), G(n,k)$ obeying equation
$$F(n+1,k)-F(n,k)=G(n,k+1)-G(n,k)tag{$ast$}$$
from which $(1)$ can be proved? That is, is it possible to transform the defining series for $zeta(4):=sum_{n=1}^{infty}1/n^4$ by means of the Wilf-Zeilberger method (or the Markov-WZ Method) into the faster series $(1)$? (b) Most likely there isn't any such a pair $(F, G)$, but I do not have the means to use these methods on my own.
Short description of section 1 of Alf van der Poorten's paper
The defining series for $zeta(3):=sum_{n=1}^{infty}1/n^3$ and $zeta(2):=sum_{n=1}^{infty}1/n^2$ are accelerated resulting in
begin{equation*}
zeta (2)=3sum_{n=1}^{infty }
frac{1}{n^{2}binom{2n}{n}},tag{2}
end{equation*}
begin{equation*}
zeta (3)=frac{5}{2}sum_{n=1}^{infty }
frac{(-1)^{n-1}}{n^{3}binom{2n}{n}}tag{3}.
end{equation*}
For instance, $(3)$ follows from the identity
begin{equation*}
sum_{n=1}^{N}frac{1}{n^{3}}-2sum_{n=1}^{N}frac{left( -1right) ^{n-1}}{n^{3}binom{2n}{n}}=sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{N+k}{k}binom{N}{k}}-sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{2k}{k}}tag{4},
end{equation*}
by letting $Nrightarrow infty $ and noticing that
begin{equation*}
lim_{Ntoinfty}sum_{k=1}^{infty}frac{(-1)^{k}}{2k^{3}binom{N+k}{k}binom{N}{k}}=0.
end{equation*}
Equality $(4)$ can be explained as follows:
- Write
begin{equation*}
X_{n,k}=frac{(-1)^{k-1}}{k^{2}binom{n+k}{k}binom{n-1}{k}},qquad D_{n,k}=frac{(-1)^{k}}{n^{2}binom{n+k}{k}binom{n-1}{k}}qquad k<n.
end{equation*}
- Notice that $$X_{n,k}=D_{n,k-1}-D_{n,k}.tag{5}$$ Hence
begin{eqnarray*}
sum_{k=1}^{n-1}frac{X_{n,k}}{n} &=&sum_{k=1}^{n-1}left( frac{D_{n,k-1}}{
n}-frac{D_{n,k}}{n}right) =frac{D_{n,0}}{n}-frac{D_{n,n-1}}{n} \
&=&frac{1}{n^{3}}-2frac{left( -1right) ^{n-1}}{n^{3}binom{2n}{n}},qquadfrac{D_{n,0}}{n} =frac{1}{n^{3}},quad frac{D_{n,n-1}}{n}=2frac{
left( -1right) ^{n-1}}{n^{3}binom{2n}{n}}
end{eqnarray*}
- Sum over $k$, $1leq
kleq n-1$
begin{equation*}
sum_{k=1}^{n-1}X_{n,k}=sum_{k=1}^{n-1}left( D_{n,k-1}-D_{n,k}right)
=D_{n,0}-D_{n,n-1}.
end{equation*}
- Now, summing over $n$, $1leq nleq N$, and noticing that
begin{equation*}
frac{X_{n,k}}{n}=E_{n,k}-E_{n-1,k},qquad E_{n,k}=frac{(-1)^{k}}{2k^{3}binom{n+k}{k}binom{n}{k}},tag{6}
end{equation*}
we obtain
begin{equation*}
sum_{k=1}^{N-1}sum_{n=k+1}^{N}frac{X_{n,k}}{n}=sum_{k=1}^{N-1}
sum_{n=k+1}^{N}left( E_{n,k}-E_{n-1,k}right) =sum_{k=1}^{N}left(
E_{N,k}-E_{k,k}right).
end{equation*}
- So, on the one hand
begin{eqnarray*}
sum_{n=1}^{N}sum_{k=1}^{n-1}frac{X_{n,k}}{n} &=&sum_{n=1}^{N}frac{1}{
n^{3}}-2sum_{n=1}^{N}frac{left( -1right) ^{n-1}}{n^{3}binom{2n}{n}},tag{7}
end{eqnarray*}
and on the other hand
begin{eqnarray*}
sum_{n=1}^{N}sum_{k=1}^{n-1}frac{X_{n,k}}{n}
&=&sum_{k=1}^{N}E_{N,k}-sum_{k=1}^{N}E_{k,k} \
&=&sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{N+k}{k}binom{N}{k}}
-sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{2k}{k}}.tag{8}
end{eqnarray*}
The identity $(4)$ follows.
Remarks
- The combination of equations $(5)$ and $(6)$ forms an identity of the form $(ast)$, which is equation $(6.1.2)$ of [3, chapter 6] (Zeilberger's Algorithm).
- As for $(2)$, [2, section 1] actually explains how to accelerate $eta(2):=sum_{n=1}^{infty }(-1)^{n-1}/n^{2}$ and obtain $(2)$, using the
relation $eta(s) = left(1-2^{1-s}right) zeta(s)$. As such, if feasible, I expect that accelerating $eta(4)$ might be easier than $zeta(4)$.
References
- Henri Cohen, Généralisation d'une Construction de R. Apéry
- Alfred van der Poorten, Some wonderful formulae... Footnotes to Apery's proof of the irrationality of $zeta(3)$
- Marko Petkovsek, Herbert Wilf, Doron Zeilberger, A = B
sequences-and-series number-theory summation experimental-mathematics convergence-acceleration
$endgroup$
Question
- Is it already known whether the $zeta(4):=sum_{n=1}^{infty}1/n^4$ accelerated convergence series $(1)$, proved for instance in [1, Corollaire 5.3], could be obtained by a similar technique to the ones explained by Alf van der Poorten in [2, section 1] for $zeta(3)$ and $zeta(2)$?
$$zeta(4)=frac{36}{17}sum_{n=1}^{infty}frac{1}{n^{4}binom{2n}{n}}.tag{1}$$
- (a) In other words, does there exist a pair of functions $F(n,k), G(n,k)$ obeying equation
$$F(n+1,k)-F(n,k)=G(n,k+1)-G(n,k)tag{$ast$}$$
from which $(1)$ can be proved? That is, is it possible to transform the defining series for $zeta(4):=sum_{n=1}^{infty}1/n^4$ by means of the Wilf-Zeilberger method (or the Markov-WZ Method) into the faster series $(1)$? (b) Most likely there isn't any such a pair $(F, G)$, but I do not have the means to use these methods on my own.
Short description of section 1 of Alf van der Poorten's paper
The defining series for $zeta(3):=sum_{n=1}^{infty}1/n^3$ and $zeta(2):=sum_{n=1}^{infty}1/n^2$ are accelerated resulting in
begin{equation*}
zeta (2)=3sum_{n=1}^{infty }
frac{1}{n^{2}binom{2n}{n}},tag{2}
end{equation*}
begin{equation*}
zeta (3)=frac{5}{2}sum_{n=1}^{infty }
frac{(-1)^{n-1}}{n^{3}binom{2n}{n}}tag{3}.
end{equation*}
For instance, $(3)$ follows from the identity
begin{equation*}
sum_{n=1}^{N}frac{1}{n^{3}}-2sum_{n=1}^{N}frac{left( -1right) ^{n-1}}{n^{3}binom{2n}{n}}=sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{N+k}{k}binom{N}{k}}-sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{2k}{k}}tag{4},
end{equation*}
by letting $Nrightarrow infty $ and noticing that
begin{equation*}
lim_{Ntoinfty}sum_{k=1}^{infty}frac{(-1)^{k}}{2k^{3}binom{N+k}{k}binom{N}{k}}=0.
end{equation*}
Equality $(4)$ can be explained as follows:
- Write
begin{equation*}
X_{n,k}=frac{(-1)^{k-1}}{k^{2}binom{n+k}{k}binom{n-1}{k}},qquad D_{n,k}=frac{(-1)^{k}}{n^{2}binom{n+k}{k}binom{n-1}{k}}qquad k<n.
end{equation*}
- Notice that $$X_{n,k}=D_{n,k-1}-D_{n,k}.tag{5}$$ Hence
begin{eqnarray*}
sum_{k=1}^{n-1}frac{X_{n,k}}{n} &=&sum_{k=1}^{n-1}left( frac{D_{n,k-1}}{
n}-frac{D_{n,k}}{n}right) =frac{D_{n,0}}{n}-frac{D_{n,n-1}}{n} \
&=&frac{1}{n^{3}}-2frac{left( -1right) ^{n-1}}{n^{3}binom{2n}{n}},qquadfrac{D_{n,0}}{n} =frac{1}{n^{3}},quad frac{D_{n,n-1}}{n}=2frac{
left( -1right) ^{n-1}}{n^{3}binom{2n}{n}}
end{eqnarray*}
- Sum over $k$, $1leq
kleq n-1$
begin{equation*}
sum_{k=1}^{n-1}X_{n,k}=sum_{k=1}^{n-1}left( D_{n,k-1}-D_{n,k}right)
=D_{n,0}-D_{n,n-1}.
end{equation*}
- Now, summing over $n$, $1leq nleq N$, and noticing that
begin{equation*}
frac{X_{n,k}}{n}=E_{n,k}-E_{n-1,k},qquad E_{n,k}=frac{(-1)^{k}}{2k^{3}binom{n+k}{k}binom{n}{k}},tag{6}
end{equation*}
we obtain
begin{equation*}
sum_{k=1}^{N-1}sum_{n=k+1}^{N}frac{X_{n,k}}{n}=sum_{k=1}^{N-1}
sum_{n=k+1}^{N}left( E_{n,k}-E_{n-1,k}right) =sum_{k=1}^{N}left(
E_{N,k}-E_{k,k}right).
end{equation*}
- So, on the one hand
begin{eqnarray*}
sum_{n=1}^{N}sum_{k=1}^{n-1}frac{X_{n,k}}{n} &=&sum_{n=1}^{N}frac{1}{
n^{3}}-2sum_{n=1}^{N}frac{left( -1right) ^{n-1}}{n^{3}binom{2n}{n}},tag{7}
end{eqnarray*}
and on the other hand
begin{eqnarray*}
sum_{n=1}^{N}sum_{k=1}^{n-1}frac{X_{n,k}}{n}
&=&sum_{k=1}^{N}E_{N,k}-sum_{k=1}^{N}E_{k,k} \
&=&sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{N+k}{k}binom{N}{k}}
-sum_{k=1}^{N}frac{(-1)^{k}}{2k^{3}binom{2k}{k}}.tag{8}
end{eqnarray*}
The identity $(4)$ follows.
Remarks
- The combination of equations $(5)$ and $(6)$ forms an identity of the form $(ast)$, which is equation $(6.1.2)$ of [3, chapter 6] (Zeilberger's Algorithm).
- As for $(2)$, [2, section 1] actually explains how to accelerate $eta(2):=sum_{n=1}^{infty }(-1)^{n-1}/n^{2}$ and obtain $(2)$, using the
relation $eta(s) = left(1-2^{1-s}right) zeta(s)$. As such, if feasible, I expect that accelerating $eta(4)$ might be easier than $zeta(4)$.
References
- Henri Cohen, Généralisation d'une Construction de R. Apéry
- Alfred van der Poorten, Some wonderful formulae... Footnotes to Apery's proof of the irrationality of $zeta(3)$
- Marko Petkovsek, Herbert Wilf, Doron Zeilberger, A = B
sequences-and-series number-theory summation experimental-mathematics convergence-acceleration
sequences-and-series number-theory summation experimental-mathematics convergence-acceleration
edited Dec 18 '18 at 21:30
Américo Tavares
asked May 14 '17 at 19:36
Américo TavaresAmérico Tavares
32.6k1181206
32.6k1181206
$begingroup$
what is the question?
$endgroup$
– Masacroso
May 14 '17 at 19:42
$begingroup$
@Masacroso In short, can (1) be derived from an identity similar to (4)?
$endgroup$
– Américo Tavares
May 14 '17 at 19:45
1
$begingroup$
See also this fast converging series en.wikipedia.org/wiki/…
$endgroup$
– reuns
May 19 '17 at 20:53
add a comment |
$begingroup$
what is the question?
$endgroup$
– Masacroso
May 14 '17 at 19:42
$begingroup$
@Masacroso In short, can (1) be derived from an identity similar to (4)?
$endgroup$
– Américo Tavares
May 14 '17 at 19:45
1
$begingroup$
See also this fast converging series en.wikipedia.org/wiki/…
$endgroup$
– reuns
May 19 '17 at 20:53
$begingroup$
what is the question?
$endgroup$
– Masacroso
May 14 '17 at 19:42
$begingroup$
what is the question?
$endgroup$
– Masacroso
May 14 '17 at 19:42
$begingroup$
@Masacroso In short, can (1) be derived from an identity similar to (4)?
$endgroup$
– Américo Tavares
May 14 '17 at 19:45
$begingroup$
@Masacroso In short, can (1) be derived from an identity similar to (4)?
$endgroup$
– Américo Tavares
May 14 '17 at 19:45
1
1
$begingroup$
See also this fast converging series en.wikipedia.org/wiki/…
$endgroup$
– reuns
May 19 '17 at 20:53
$begingroup$
See also this fast converging series en.wikipedia.org/wiki/…
$endgroup$
– reuns
May 19 '17 at 20:53
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2281000%2fconvergence-acceleration-technique-for-zeta4-or-eta4-via-creative-te%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2281000%2fconvergence-acceleration-technique-for-zeta4-or-eta4-via-creative-te%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
what is the question?
$endgroup$
– Masacroso
May 14 '17 at 19:42
$begingroup$
@Masacroso In short, can (1) be derived from an identity similar to (4)?
$endgroup$
– Américo Tavares
May 14 '17 at 19:45
1
$begingroup$
See also this fast converging series en.wikipedia.org/wiki/…
$endgroup$
– reuns
May 19 '17 at 20:53