Find the upper bound of $|frac{d^2}{dx^2}(e^{-x^2})|leq6$ in $xin[0,1]$
$begingroup$
Show by finding the second derivative of $e^{-x^2}$ that for all $xin[0,1]$
$$|frac{d^2}{dx^2}(e^{-x^2})|leq6$$
(if you obtain a better bound, that is fine )
My Try
let, $f(x)=e^{-x^2}$
$f''(x)=2e^{-x^2}(2x^2-1)$
From the plot in wolfram alpha I could see that the bound is 2/e or 0.73. But how to solve this analytically?
calculus upper-lower-bounds
$endgroup$
add a comment |
$begingroup$
Show by finding the second derivative of $e^{-x^2}$ that for all $xin[0,1]$
$$|frac{d^2}{dx^2}(e^{-x^2})|leq6$$
(if you obtain a better bound, that is fine )
My Try
let, $f(x)=e^{-x^2}$
$f''(x)=2e^{-x^2}(2x^2-1)$
From the plot in wolfram alpha I could see that the bound is 2/e or 0.73. But how to solve this analytically?
calculus upper-lower-bounds
$endgroup$
1
$begingroup$
What does the single $|$ mean in the title and the text of the question?
$endgroup$
– Christian Blatter
Dec 15 '18 at 9:57
$begingroup$
Sorry It should be modulus sign. I'll fix it.
$endgroup$
– emil
Dec 15 '18 at 18:34
add a comment |
$begingroup$
Show by finding the second derivative of $e^{-x^2}$ that for all $xin[0,1]$
$$|frac{d^2}{dx^2}(e^{-x^2})|leq6$$
(if you obtain a better bound, that is fine )
My Try
let, $f(x)=e^{-x^2}$
$f''(x)=2e^{-x^2}(2x^2-1)$
From the plot in wolfram alpha I could see that the bound is 2/e or 0.73. But how to solve this analytically?
calculus upper-lower-bounds
$endgroup$
Show by finding the second derivative of $e^{-x^2}$ that for all $xin[0,1]$
$$|frac{d^2}{dx^2}(e^{-x^2})|leq6$$
(if you obtain a better bound, that is fine )
My Try
let, $f(x)=e^{-x^2}$
$f''(x)=2e^{-x^2}(2x^2-1)$
From the plot in wolfram alpha I could see that the bound is 2/e or 0.73. But how to solve this analytically?
calculus upper-lower-bounds
calculus upper-lower-bounds
edited Dec 15 '18 at 18:35
emil
asked Dec 15 '18 at 9:36
emilemil
438410
438410
1
$begingroup$
What does the single $|$ mean in the title and the text of the question?
$endgroup$
– Christian Blatter
Dec 15 '18 at 9:57
$begingroup$
Sorry It should be modulus sign. I'll fix it.
$endgroup$
– emil
Dec 15 '18 at 18:34
add a comment |
1
$begingroup$
What does the single $|$ mean in the title and the text of the question?
$endgroup$
– Christian Blatter
Dec 15 '18 at 9:57
$begingroup$
Sorry It should be modulus sign. I'll fix it.
$endgroup$
– emil
Dec 15 '18 at 18:34
1
1
$begingroup$
What does the single $|$ mean in the title and the text of the question?
$endgroup$
– Christian Blatter
Dec 15 '18 at 9:57
$begingroup$
What does the single $|$ mean in the title and the text of the question?
$endgroup$
– Christian Blatter
Dec 15 '18 at 9:57
$begingroup$
Sorry It should be modulus sign. I'll fix it.
$endgroup$
– emil
Dec 15 '18 at 18:34
$begingroup$
Sorry It should be modulus sign. I'll fix it.
$endgroup$
– emil
Dec 15 '18 at 18:34
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We want to find $max{(exp(-x^2))''}$ so we evaluate its stationary points. This occurs when $$(exp(-x^2))'''=(2(2x^2-1)exp(-x^2))'=4x(3-2x^2)exp(-x^2)=0$$ so $x=0,sqrt{3/2}$. At the former, $(exp(-x^2))''=-2$ and at the latter, $(exp(-x^2))''=4exp(-3/2)<1$ which is a much tighter bound than $6$.
$endgroup$
add a comment |
$begingroup$
Just use the triangle inequality. The given bound holds for all $xinmathbb{R}$, not just $xin[0,1]$.
You know
$$
f''(x)=2cdot[2x^2exp(-x^2)-exp(-x^2)]
$$
So
begin{align*}
lvert f''(x)rvert
&leq 2cdotbigg[sup_{xinmathbb{R}}2x^2exp(-x^2)+sup_{xinmathbb{R}}exp(-x^2)bigg]\
&= 2cdotleft[2sup_{xinmathbb{R}}frac{x^2}{exp(x^2)}+1right]\
&leq 2cdotleft(2sup_{xinmathbb{R}}frac{x^2}{1+x^2}+1right)\
&leq 2cdot(2cdot 1+1)=6.
end{align*}
For $xin[0,1]$, you can obtain the bound a little more quickly using $x^2leq 1$ and $exp(-x^2)leq 1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040318%2ffind-the-upper-bound-of-fracd2dx2e-x2-leq6-in-x-in0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We want to find $max{(exp(-x^2))''}$ so we evaluate its stationary points. This occurs when $$(exp(-x^2))'''=(2(2x^2-1)exp(-x^2))'=4x(3-2x^2)exp(-x^2)=0$$ so $x=0,sqrt{3/2}$. At the former, $(exp(-x^2))''=-2$ and at the latter, $(exp(-x^2))''=4exp(-3/2)<1$ which is a much tighter bound than $6$.
$endgroup$
add a comment |
$begingroup$
We want to find $max{(exp(-x^2))''}$ so we evaluate its stationary points. This occurs when $$(exp(-x^2))'''=(2(2x^2-1)exp(-x^2))'=4x(3-2x^2)exp(-x^2)=0$$ so $x=0,sqrt{3/2}$. At the former, $(exp(-x^2))''=-2$ and at the latter, $(exp(-x^2))''=4exp(-3/2)<1$ which is a much tighter bound than $6$.
$endgroup$
add a comment |
$begingroup$
We want to find $max{(exp(-x^2))''}$ so we evaluate its stationary points. This occurs when $$(exp(-x^2))'''=(2(2x^2-1)exp(-x^2))'=4x(3-2x^2)exp(-x^2)=0$$ so $x=0,sqrt{3/2}$. At the former, $(exp(-x^2))''=-2$ and at the latter, $(exp(-x^2))''=4exp(-3/2)<1$ which is a much tighter bound than $6$.
$endgroup$
We want to find $max{(exp(-x^2))''}$ so we evaluate its stationary points. This occurs when $$(exp(-x^2))'''=(2(2x^2-1)exp(-x^2))'=4x(3-2x^2)exp(-x^2)=0$$ so $x=0,sqrt{3/2}$. At the former, $(exp(-x^2))''=-2$ and at the latter, $(exp(-x^2))''=4exp(-3/2)<1$ which is a much tighter bound than $6$.
answered Dec 15 '18 at 10:31
TheSimpliFireTheSimpliFire
12.7k62461
12.7k62461
add a comment |
add a comment |
$begingroup$
Just use the triangle inequality. The given bound holds for all $xinmathbb{R}$, not just $xin[0,1]$.
You know
$$
f''(x)=2cdot[2x^2exp(-x^2)-exp(-x^2)]
$$
So
begin{align*}
lvert f''(x)rvert
&leq 2cdotbigg[sup_{xinmathbb{R}}2x^2exp(-x^2)+sup_{xinmathbb{R}}exp(-x^2)bigg]\
&= 2cdotleft[2sup_{xinmathbb{R}}frac{x^2}{exp(x^2)}+1right]\
&leq 2cdotleft(2sup_{xinmathbb{R}}frac{x^2}{1+x^2}+1right)\
&leq 2cdot(2cdot 1+1)=6.
end{align*}
For $xin[0,1]$, you can obtain the bound a little more quickly using $x^2leq 1$ and $exp(-x^2)leq 1$.
$endgroup$
add a comment |
$begingroup$
Just use the triangle inequality. The given bound holds for all $xinmathbb{R}$, not just $xin[0,1]$.
You know
$$
f''(x)=2cdot[2x^2exp(-x^2)-exp(-x^2)]
$$
So
begin{align*}
lvert f''(x)rvert
&leq 2cdotbigg[sup_{xinmathbb{R}}2x^2exp(-x^2)+sup_{xinmathbb{R}}exp(-x^2)bigg]\
&= 2cdotleft[2sup_{xinmathbb{R}}frac{x^2}{exp(x^2)}+1right]\
&leq 2cdotleft(2sup_{xinmathbb{R}}frac{x^2}{1+x^2}+1right)\
&leq 2cdot(2cdot 1+1)=6.
end{align*}
For $xin[0,1]$, you can obtain the bound a little more quickly using $x^2leq 1$ and $exp(-x^2)leq 1$.
$endgroup$
add a comment |
$begingroup$
Just use the triangle inequality. The given bound holds for all $xinmathbb{R}$, not just $xin[0,1]$.
You know
$$
f''(x)=2cdot[2x^2exp(-x^2)-exp(-x^2)]
$$
So
begin{align*}
lvert f''(x)rvert
&leq 2cdotbigg[sup_{xinmathbb{R}}2x^2exp(-x^2)+sup_{xinmathbb{R}}exp(-x^2)bigg]\
&= 2cdotleft[2sup_{xinmathbb{R}}frac{x^2}{exp(x^2)}+1right]\
&leq 2cdotleft(2sup_{xinmathbb{R}}frac{x^2}{1+x^2}+1right)\
&leq 2cdot(2cdot 1+1)=6.
end{align*}
For $xin[0,1]$, you can obtain the bound a little more quickly using $x^2leq 1$ and $exp(-x^2)leq 1$.
$endgroup$
Just use the triangle inequality. The given bound holds for all $xinmathbb{R}$, not just $xin[0,1]$.
You know
$$
f''(x)=2cdot[2x^2exp(-x^2)-exp(-x^2)]
$$
So
begin{align*}
lvert f''(x)rvert
&leq 2cdotbigg[sup_{xinmathbb{R}}2x^2exp(-x^2)+sup_{xinmathbb{R}}exp(-x^2)bigg]\
&= 2cdotleft[2sup_{xinmathbb{R}}frac{x^2}{exp(x^2)}+1right]\
&leq 2cdotleft(2sup_{xinmathbb{R}}frac{x^2}{1+x^2}+1right)\
&leq 2cdot(2cdot 1+1)=6.
end{align*}
For $xin[0,1]$, you can obtain the bound a little more quickly using $x^2leq 1$ and $exp(-x^2)leq 1$.
answered Dec 16 '18 at 8:30
user10354138user10354138
7,4322925
7,4322925
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040318%2ffind-the-upper-bound-of-fracd2dx2e-x2-leq6-in-x-in0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
What does the single $|$ mean in the title and the text of the question?
$endgroup$
– Christian Blatter
Dec 15 '18 at 9:57
$begingroup$
Sorry It should be modulus sign. I'll fix it.
$endgroup$
– emil
Dec 15 '18 at 18:34