Gamma reflection formula proof
$begingroup$
For $xinmathbb{C}setminus0,-1,...$ If we know that $$Gamma(x)=lim_{nto +infty} frac{n^x.n!}{prod_{k=0}^n(k+x)}$$
and $$sin(pi x)=pi xprod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)$$
Then we have
$$ Gamma(x)Gamma(1-x)=lim_{nto +infty} frac{n^x.n!.n^{1-x}.n!}{prod_{k=0}^n(k+x)(k+1-x)} =frac1xlim_{nto +infty} frac{n}{n+1-x}prod_{k=1}^nfrac{k^2}{k^2-x^2}=$$$$=frac1xleft(prod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)right)^{-1}=frac{pi}{sin(pi x)} $$
Is this a correct way to prove the famous Euler's reflection formula ?
proof-verification special-functions gamma-function
$endgroup$
add a comment |
$begingroup$
For $xinmathbb{C}setminus0,-1,...$ If we know that $$Gamma(x)=lim_{nto +infty} frac{n^x.n!}{prod_{k=0}^n(k+x)}$$
and $$sin(pi x)=pi xprod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)$$
Then we have
$$ Gamma(x)Gamma(1-x)=lim_{nto +infty} frac{n^x.n!.n^{1-x}.n!}{prod_{k=0}^n(k+x)(k+1-x)} =frac1xlim_{nto +infty} frac{n}{n+1-x}prod_{k=1}^nfrac{k^2}{k^2-x^2}=$$$$=frac1xleft(prod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)right)^{-1}=frac{pi}{sin(pi x)} $$
Is this a correct way to prove the famous Euler's reflection formula ?
proof-verification special-functions gamma-function
$endgroup$
add a comment |
$begingroup$
For $xinmathbb{C}setminus0,-1,...$ If we know that $$Gamma(x)=lim_{nto +infty} frac{n^x.n!}{prod_{k=0}^n(k+x)}$$
and $$sin(pi x)=pi xprod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)$$
Then we have
$$ Gamma(x)Gamma(1-x)=lim_{nto +infty} frac{n^x.n!.n^{1-x}.n!}{prod_{k=0}^n(k+x)(k+1-x)} =frac1xlim_{nto +infty} frac{n}{n+1-x}prod_{k=1}^nfrac{k^2}{k^2-x^2}=$$$$=frac1xleft(prod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)right)^{-1}=frac{pi}{sin(pi x)} $$
Is this a correct way to prove the famous Euler's reflection formula ?
proof-verification special-functions gamma-function
$endgroup$
For $xinmathbb{C}setminus0,-1,...$ If we know that $$Gamma(x)=lim_{nto +infty} frac{n^x.n!}{prod_{k=0}^n(k+x)}$$
and $$sin(pi x)=pi xprod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)$$
Then we have
$$ Gamma(x)Gamma(1-x)=lim_{nto +infty} frac{n^x.n!.n^{1-x}.n!}{prod_{k=0}^n(k+x)(k+1-x)} =frac1xlim_{nto +infty} frac{n}{n+1-x}prod_{k=1}^nfrac{k^2}{k^2-x^2}=$$$$=frac1xleft(prod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)right)^{-1}=frac{pi}{sin(pi x)} $$
Is this a correct way to prove the famous Euler's reflection formula ?
proof-verification special-functions gamma-function
proof-verification special-functions gamma-function
edited Dec 19 '18 at 1:46
Yadati Kiran
2,1261622
2,1261622
asked Dec 16 '17 at 4:38
KamouloxKamoulox
185
185
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Other than the fact that the formula for $$sin pi x = pi x , , prod_{k=1}^{infty} left(1-frac{x^2}{k^2}right)$$ should be corrected, I think your proof is fine!
$endgroup$
$begingroup$
My bad.. Thanks!
$endgroup$
– Kamoulox
Dec 16 '17 at 4:49
$begingroup$
would the downvoter care to comment on what is wrong with this answer?
$endgroup$
– robjohn♦
Dec 16 '17 at 4:58
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2568788%2fgamma-reflection-formula-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Other than the fact that the formula for $$sin pi x = pi x , , prod_{k=1}^{infty} left(1-frac{x^2}{k^2}right)$$ should be corrected, I think your proof is fine!
$endgroup$
$begingroup$
My bad.. Thanks!
$endgroup$
– Kamoulox
Dec 16 '17 at 4:49
$begingroup$
would the downvoter care to comment on what is wrong with this answer?
$endgroup$
– robjohn♦
Dec 16 '17 at 4:58
add a comment |
$begingroup$
Other than the fact that the formula for $$sin pi x = pi x , , prod_{k=1}^{infty} left(1-frac{x^2}{k^2}right)$$ should be corrected, I think your proof is fine!
$endgroup$
$begingroup$
My bad.. Thanks!
$endgroup$
– Kamoulox
Dec 16 '17 at 4:49
$begingroup$
would the downvoter care to comment on what is wrong with this answer?
$endgroup$
– robjohn♦
Dec 16 '17 at 4:58
add a comment |
$begingroup$
Other than the fact that the formula for $$sin pi x = pi x , , prod_{k=1}^{infty} left(1-frac{x^2}{k^2}right)$$ should be corrected, I think your proof is fine!
$endgroup$
Other than the fact that the formula for $$sin pi x = pi x , , prod_{k=1}^{infty} left(1-frac{x^2}{k^2}right)$$ should be corrected, I think your proof is fine!
answered Dec 16 '17 at 4:43
RohanRohan
27.8k42444
27.8k42444
$begingroup$
My bad.. Thanks!
$endgroup$
– Kamoulox
Dec 16 '17 at 4:49
$begingroup$
would the downvoter care to comment on what is wrong with this answer?
$endgroup$
– robjohn♦
Dec 16 '17 at 4:58
add a comment |
$begingroup$
My bad.. Thanks!
$endgroup$
– Kamoulox
Dec 16 '17 at 4:49
$begingroup$
would the downvoter care to comment on what is wrong with this answer?
$endgroup$
– robjohn♦
Dec 16 '17 at 4:58
$begingroup$
My bad.. Thanks!
$endgroup$
– Kamoulox
Dec 16 '17 at 4:49
$begingroup$
My bad.. Thanks!
$endgroup$
– Kamoulox
Dec 16 '17 at 4:49
$begingroup$
would the downvoter care to comment on what is wrong with this answer?
$endgroup$
– robjohn♦
Dec 16 '17 at 4:58
$begingroup$
would the downvoter care to comment on what is wrong with this answer?
$endgroup$
– robjohn♦
Dec 16 '17 at 4:58
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2568788%2fgamma-reflection-formula-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown