Gamma reflection formula proof












3












$begingroup$


For $xinmathbb{C}setminus0,-1,...$ If we know that $$Gamma(x)=lim_{nto +infty} frac{n^x.n!}{prod_{k=0}^n(k+x)}$$
and $$sin(pi x)=pi xprod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)$$



Then we have
$$ Gamma(x)Gamma(1-x)=lim_{nto +infty} frac{n^x.n!.n^{1-x}.n!}{prod_{k=0}^n(k+x)(k+1-x)} =frac1xlim_{nto +infty} frac{n}{n+1-x}prod_{k=1}^nfrac{k^2}{k^2-x^2}=$$$$=frac1xleft(prod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)right)^{-1}=frac{pi}{sin(pi x)} $$
Is this a correct way to prove the famous Euler's reflection formula ?










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    For $xinmathbb{C}setminus0,-1,...$ If we know that $$Gamma(x)=lim_{nto +infty} frac{n^x.n!}{prod_{k=0}^n(k+x)}$$
    and $$sin(pi x)=pi xprod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)$$



    Then we have
    $$ Gamma(x)Gamma(1-x)=lim_{nto +infty} frac{n^x.n!.n^{1-x}.n!}{prod_{k=0}^n(k+x)(k+1-x)} =frac1xlim_{nto +infty} frac{n}{n+1-x}prod_{k=1}^nfrac{k^2}{k^2-x^2}=$$$$=frac1xleft(prod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)right)^{-1}=frac{pi}{sin(pi x)} $$
    Is this a correct way to prove the famous Euler's reflection formula ?










    share|cite|improve this question











    $endgroup$















      3












      3








      3





      $begingroup$


      For $xinmathbb{C}setminus0,-1,...$ If we know that $$Gamma(x)=lim_{nto +infty} frac{n^x.n!}{prod_{k=0}^n(k+x)}$$
      and $$sin(pi x)=pi xprod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)$$



      Then we have
      $$ Gamma(x)Gamma(1-x)=lim_{nto +infty} frac{n^x.n!.n^{1-x}.n!}{prod_{k=0}^n(k+x)(k+1-x)} =frac1xlim_{nto +infty} frac{n}{n+1-x}prod_{k=1}^nfrac{k^2}{k^2-x^2}=$$$$=frac1xleft(prod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)right)^{-1}=frac{pi}{sin(pi x)} $$
      Is this a correct way to prove the famous Euler's reflection formula ?










      share|cite|improve this question











      $endgroup$




      For $xinmathbb{C}setminus0,-1,...$ If we know that $$Gamma(x)=lim_{nto +infty} frac{n^x.n!}{prod_{k=0}^n(k+x)}$$
      and $$sin(pi x)=pi xprod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)$$



      Then we have
      $$ Gamma(x)Gamma(1-x)=lim_{nto +infty} frac{n^x.n!.n^{1-x}.n!}{prod_{k=0}^n(k+x)(k+1-x)} =frac1xlim_{nto +infty} frac{n}{n+1-x}prod_{k=1}^nfrac{k^2}{k^2-x^2}=$$$$=frac1xleft(prod_{k=1}^{infty}left(1- frac{x^2}{k^2}right)right)^{-1}=frac{pi}{sin(pi x)} $$
      Is this a correct way to prove the famous Euler's reflection formula ?







      proof-verification special-functions gamma-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 19 '18 at 1:46









      Yadati Kiran

      2,1261622




      2,1261622










      asked Dec 16 '17 at 4:38









      KamouloxKamoulox

      185




      185






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Other than the fact that the formula for $$sin pi x = pi x , , prod_{k=1}^{infty} left(1-frac{x^2}{k^2}right)$$ should be corrected, I think your proof is fine!






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            My bad.. Thanks!
            $endgroup$
            – Kamoulox
            Dec 16 '17 at 4:49










          • $begingroup$
            would the downvoter care to comment on what is wrong with this answer?
            $endgroup$
            – robjohn
            Dec 16 '17 at 4:58












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2568788%2fgamma-reflection-formula-proof%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Other than the fact that the formula for $$sin pi x = pi x , , prod_{k=1}^{infty} left(1-frac{x^2}{k^2}right)$$ should be corrected, I think your proof is fine!






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            My bad.. Thanks!
            $endgroup$
            – Kamoulox
            Dec 16 '17 at 4:49










          • $begingroup$
            would the downvoter care to comment on what is wrong with this answer?
            $endgroup$
            – robjohn
            Dec 16 '17 at 4:58
















          2












          $begingroup$

          Other than the fact that the formula for $$sin pi x = pi x , , prod_{k=1}^{infty} left(1-frac{x^2}{k^2}right)$$ should be corrected, I think your proof is fine!






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            My bad.. Thanks!
            $endgroup$
            – Kamoulox
            Dec 16 '17 at 4:49










          • $begingroup$
            would the downvoter care to comment on what is wrong with this answer?
            $endgroup$
            – robjohn
            Dec 16 '17 at 4:58














          2












          2








          2





          $begingroup$

          Other than the fact that the formula for $$sin pi x = pi x , , prod_{k=1}^{infty} left(1-frac{x^2}{k^2}right)$$ should be corrected, I think your proof is fine!






          share|cite|improve this answer









          $endgroup$



          Other than the fact that the formula for $$sin pi x = pi x , , prod_{k=1}^{infty} left(1-frac{x^2}{k^2}right)$$ should be corrected, I think your proof is fine!







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 16 '17 at 4:43









          RohanRohan

          27.8k42444




          27.8k42444












          • $begingroup$
            My bad.. Thanks!
            $endgroup$
            – Kamoulox
            Dec 16 '17 at 4:49










          • $begingroup$
            would the downvoter care to comment on what is wrong with this answer?
            $endgroup$
            – robjohn
            Dec 16 '17 at 4:58


















          • $begingroup$
            My bad.. Thanks!
            $endgroup$
            – Kamoulox
            Dec 16 '17 at 4:49










          • $begingroup$
            would the downvoter care to comment on what is wrong with this answer?
            $endgroup$
            – robjohn
            Dec 16 '17 at 4:58
















          $begingroup$
          My bad.. Thanks!
          $endgroup$
          – Kamoulox
          Dec 16 '17 at 4:49




          $begingroup$
          My bad.. Thanks!
          $endgroup$
          – Kamoulox
          Dec 16 '17 at 4:49












          $begingroup$
          would the downvoter care to comment on what is wrong with this answer?
          $endgroup$
          – robjohn
          Dec 16 '17 at 4:58




          $begingroup$
          would the downvoter care to comment on what is wrong with this answer?
          $endgroup$
          – robjohn
          Dec 16 '17 at 4:58


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2568788%2fgamma-reflection-formula-proof%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa