Prove $lim_{nto infty}int_0^Tg(x)h(nx) dx=cfrac{1}{T}(int_0^Tg(x)dx)(int_0^Th(x)dx)$
$begingroup$
If $h(x),g(x)$ continuous, and $h(x)$ is periodic function with a period $T$, then prove:
$$lim_{nto infty}int_0^Tg(x)h(nx) dx=cfrac{1}{T}left(int_0^Tg(x)dxright)left(int_0^Th(x)dxright)$$
I have no idea about this problem. I don’t know how to use the periodicity.
calculus integration limits analysis
$endgroup$
add a comment |
$begingroup$
If $h(x),g(x)$ continuous, and $h(x)$ is periodic function with a period $T$, then prove:
$$lim_{nto infty}int_0^Tg(x)h(nx) dx=cfrac{1}{T}left(int_0^Tg(x)dxright)left(int_0^Th(x)dxright)$$
I have no idea about this problem. I don’t know how to use the periodicity.
calculus integration limits analysis
$endgroup$
1
$begingroup$
Hello and welcome to MSE! What are your thoughts on this problem? What have you tried so far? What related theorems do you know, like for example the Riemann-Lebesgue Lemma and how did you proof it?
$endgroup$
– F. Conrad
Dec 19 '18 at 3:07
$begingroup$
Do you mean $g(x)$ and $h(x)$, in which $h(x)$ is periodic, or your equation can not fit your assumption.
$endgroup$
– Nanayajitzuki
Dec 19 '18 at 4:07
$begingroup$
@Nanayajitzuki Oh, yes. Thank you for reminding me. I just found this mistake and I ’m correcting it now.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:29
1
$begingroup$
@F.Conrad Thanks for your suggestions. I’ll come to know about the related theorems, like the Riemann-Lebesgue Lemma you mentioned, and rethink the problem.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:42
add a comment |
$begingroup$
If $h(x),g(x)$ continuous, and $h(x)$ is periodic function with a period $T$, then prove:
$$lim_{nto infty}int_0^Tg(x)h(nx) dx=cfrac{1}{T}left(int_0^Tg(x)dxright)left(int_0^Th(x)dxright)$$
I have no idea about this problem. I don’t know how to use the periodicity.
calculus integration limits analysis
$endgroup$
If $h(x),g(x)$ continuous, and $h(x)$ is periodic function with a period $T$, then prove:
$$lim_{nto infty}int_0^Tg(x)h(nx) dx=cfrac{1}{T}left(int_0^Tg(x)dxright)left(int_0^Th(x)dxright)$$
I have no idea about this problem. I don’t know how to use the periodicity.
calculus integration limits analysis
calculus integration limits analysis
edited Dec 19 '18 at 18:51
Larry
2,53031131
2,53031131
asked Dec 19 '18 at 2:49
Yan PengYan Peng
185
185
1
$begingroup$
Hello and welcome to MSE! What are your thoughts on this problem? What have you tried so far? What related theorems do you know, like for example the Riemann-Lebesgue Lemma and how did you proof it?
$endgroup$
– F. Conrad
Dec 19 '18 at 3:07
$begingroup$
Do you mean $g(x)$ and $h(x)$, in which $h(x)$ is periodic, or your equation can not fit your assumption.
$endgroup$
– Nanayajitzuki
Dec 19 '18 at 4:07
$begingroup$
@Nanayajitzuki Oh, yes. Thank you for reminding me. I just found this mistake and I ’m correcting it now.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:29
1
$begingroup$
@F.Conrad Thanks for your suggestions. I’ll come to know about the related theorems, like the Riemann-Lebesgue Lemma you mentioned, and rethink the problem.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:42
add a comment |
1
$begingroup$
Hello and welcome to MSE! What are your thoughts on this problem? What have you tried so far? What related theorems do you know, like for example the Riemann-Lebesgue Lemma and how did you proof it?
$endgroup$
– F. Conrad
Dec 19 '18 at 3:07
$begingroup$
Do you mean $g(x)$ and $h(x)$, in which $h(x)$ is periodic, or your equation can not fit your assumption.
$endgroup$
– Nanayajitzuki
Dec 19 '18 at 4:07
$begingroup$
@Nanayajitzuki Oh, yes. Thank you for reminding me. I just found this mistake and I ’m correcting it now.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:29
1
$begingroup$
@F.Conrad Thanks for your suggestions. I’ll come to know about the related theorems, like the Riemann-Lebesgue Lemma you mentioned, and rethink the problem.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:42
1
1
$begingroup$
Hello and welcome to MSE! What are your thoughts on this problem? What have you tried so far? What related theorems do you know, like for example the Riemann-Lebesgue Lemma and how did you proof it?
$endgroup$
– F. Conrad
Dec 19 '18 at 3:07
$begingroup$
Hello and welcome to MSE! What are your thoughts on this problem? What have you tried so far? What related theorems do you know, like for example the Riemann-Lebesgue Lemma and how did you proof it?
$endgroup$
– F. Conrad
Dec 19 '18 at 3:07
$begingroup$
Do you mean $g(x)$ and $h(x)$, in which $h(x)$ is periodic, or your equation can not fit your assumption.
$endgroup$
– Nanayajitzuki
Dec 19 '18 at 4:07
$begingroup$
Do you mean $g(x)$ and $h(x)$, in which $h(x)$ is periodic, or your equation can not fit your assumption.
$endgroup$
– Nanayajitzuki
Dec 19 '18 at 4:07
$begingroup$
@Nanayajitzuki Oh, yes. Thank you for reminding me. I just found this mistake and I ’m correcting it now.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:29
$begingroup$
@Nanayajitzuki Oh, yes. Thank you for reminding me. I just found this mistake and I ’m correcting it now.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:29
1
1
$begingroup$
@F.Conrad Thanks for your suggestions. I’ll come to know about the related theorems, like the Riemann-Lebesgue Lemma you mentioned, and rethink the problem.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:42
$begingroup$
@F.Conrad Thanks for your suggestions. I’ll come to know about the related theorems, like the Riemann-Lebesgue Lemma you mentioned, and rethink the problem.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:42
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
(edited for complement of some critical steps)
I think your assumption actually is If $g(x),h(x)$ are continuous, and $h(x)$ is periodic function with a period $T$.
I will give a hint under this assumption (some details may not be so strict), let
$$widetilde h(x)=h(x)-frac1{T} int_0^{T}{h(t){text d}t}$$
you will get
$$int_0^{T}{widetilde h(x){text d}x}=int_0^{T}{h(x){text d}x}-int_0^{T}{left( frac1{T}int_0^{T}{h(t){text d}t}right){text d}x}=0$$
so you just need to prove
$$lim_{nto infty}int_0^{T}{g(x)widetilde h(nx){text d}x}=left(frac1{T}int_0^{T}widetilde h(x){text d}xright)left(int_0^{T}{g(x){text d}x}right)=0$$
let $t=nx$ (here I assume $n$ is any positive real number), where $[n]$ means the integer part of $n$ and $a=T(n-[n])<T$
$$begin{aligned}
int_0^{T}{g(x)widetilde h(nx){text d}x}
& = frac1{n} int_0^{[n]T+a}{g(t/n)widetilde h(t){text d}t} \
& = frac1{n} sum_{k=0}^{[n]} int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} + frac1{n} int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t}
end{aligned}$$
the continuity of $g(x)$ suggests that $g(t/n)$ in the $k$th period should almost performance as a constant when $ntoinfty$, thus for any $k$
$$int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} to g(t_{k}) int_{kT}^{(k+1)T}{widetilde h(t){text d}t} = 0$$
as well notice that $g(x),h(x)$ are continuous, which means they are bounded in the period, assume $|g(x)|le G$, $|widetilde h(x)|le H$
$$frac1{n} left| int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t} right| le frac1{n} int_{[n]T}^{[n]T+a} {|g(t/n)||widetilde h(t)|{text d}t} le frac{G}{n}int_0^{a}{|widetilde h(t)|{text d}t} le frac{aGH}{n} to 0$$
just for curiosity, in general:
If $h(x)$ is Lebesgue measurable and periodic in $mathbb R$, $I$ is any interval, $g(x) in mathcal L(I)$, we have
$$lim_{|lambda| to +infty}int_I {g(x)h(lambda x){text d}x}=left(frac1{T}int_0^{T}h(x){text d}xright)left(int_I{g(x){text d}x}right)$$
under the meaning of Lebesgue integration.
$endgroup$
add a comment |
$begingroup$
If the periodic one is $g$, the equality does not hold. For instance, take $g(x)=sin^2x$, $h(x)=x$, $T=pi$.
When $h$ has period $T$, use first the substitution $u=nx$ to get
$$
int_0^Tg(x),h(nx),dx=frac1nint_0^{nT} g(x/n),h(x),dx=frac1nsum_{k=0}^{n-1}int_{kT}^{(k+1)T} g(x/n),h(x),dx.
$$
Next substitute $v=x-kT$, to obtain
begin{align}
int_0^Tg(x),h(nx),dx&=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x+kT),dx=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x),dx\
&=frac1Tint_{0}^{T} left(sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tnright),h(x),dx.
end{align}
Because $g$ is uniformly continuous on $[0,T]$, the values $g(tfrac{x+kT}n)$ are very close to $g(tfrac kTn)$. So
$$
lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tn
=lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{kT}n),frac Tn=int_0^Tg(x),dx.
$$
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045934%2fprove-lim-n-to-infty-int-0tgxhnx-dx-cfrac1t-int-0tgxdx-int%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
(edited for complement of some critical steps)
I think your assumption actually is If $g(x),h(x)$ are continuous, and $h(x)$ is periodic function with a period $T$.
I will give a hint under this assumption (some details may not be so strict), let
$$widetilde h(x)=h(x)-frac1{T} int_0^{T}{h(t){text d}t}$$
you will get
$$int_0^{T}{widetilde h(x){text d}x}=int_0^{T}{h(x){text d}x}-int_0^{T}{left( frac1{T}int_0^{T}{h(t){text d}t}right){text d}x}=0$$
so you just need to prove
$$lim_{nto infty}int_0^{T}{g(x)widetilde h(nx){text d}x}=left(frac1{T}int_0^{T}widetilde h(x){text d}xright)left(int_0^{T}{g(x){text d}x}right)=0$$
let $t=nx$ (here I assume $n$ is any positive real number), where $[n]$ means the integer part of $n$ and $a=T(n-[n])<T$
$$begin{aligned}
int_0^{T}{g(x)widetilde h(nx){text d}x}
& = frac1{n} int_0^{[n]T+a}{g(t/n)widetilde h(t){text d}t} \
& = frac1{n} sum_{k=0}^{[n]} int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} + frac1{n} int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t}
end{aligned}$$
the continuity of $g(x)$ suggests that $g(t/n)$ in the $k$th period should almost performance as a constant when $ntoinfty$, thus for any $k$
$$int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} to g(t_{k}) int_{kT}^{(k+1)T}{widetilde h(t){text d}t} = 0$$
as well notice that $g(x),h(x)$ are continuous, which means they are bounded in the period, assume $|g(x)|le G$, $|widetilde h(x)|le H$
$$frac1{n} left| int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t} right| le frac1{n} int_{[n]T}^{[n]T+a} {|g(t/n)||widetilde h(t)|{text d}t} le frac{G}{n}int_0^{a}{|widetilde h(t)|{text d}t} le frac{aGH}{n} to 0$$
just for curiosity, in general:
If $h(x)$ is Lebesgue measurable and periodic in $mathbb R$, $I$ is any interval, $g(x) in mathcal L(I)$, we have
$$lim_{|lambda| to +infty}int_I {g(x)h(lambda x){text d}x}=left(frac1{T}int_0^{T}h(x){text d}xright)left(int_I{g(x){text d}x}right)$$
under the meaning of Lebesgue integration.
$endgroup$
add a comment |
$begingroup$
(edited for complement of some critical steps)
I think your assumption actually is If $g(x),h(x)$ are continuous, and $h(x)$ is periodic function with a period $T$.
I will give a hint under this assumption (some details may not be so strict), let
$$widetilde h(x)=h(x)-frac1{T} int_0^{T}{h(t){text d}t}$$
you will get
$$int_0^{T}{widetilde h(x){text d}x}=int_0^{T}{h(x){text d}x}-int_0^{T}{left( frac1{T}int_0^{T}{h(t){text d}t}right){text d}x}=0$$
so you just need to prove
$$lim_{nto infty}int_0^{T}{g(x)widetilde h(nx){text d}x}=left(frac1{T}int_0^{T}widetilde h(x){text d}xright)left(int_0^{T}{g(x){text d}x}right)=0$$
let $t=nx$ (here I assume $n$ is any positive real number), where $[n]$ means the integer part of $n$ and $a=T(n-[n])<T$
$$begin{aligned}
int_0^{T}{g(x)widetilde h(nx){text d}x}
& = frac1{n} int_0^{[n]T+a}{g(t/n)widetilde h(t){text d}t} \
& = frac1{n} sum_{k=0}^{[n]} int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} + frac1{n} int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t}
end{aligned}$$
the continuity of $g(x)$ suggests that $g(t/n)$ in the $k$th period should almost performance as a constant when $ntoinfty$, thus for any $k$
$$int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} to g(t_{k}) int_{kT}^{(k+1)T}{widetilde h(t){text d}t} = 0$$
as well notice that $g(x),h(x)$ are continuous, which means they are bounded in the period, assume $|g(x)|le G$, $|widetilde h(x)|le H$
$$frac1{n} left| int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t} right| le frac1{n} int_{[n]T}^{[n]T+a} {|g(t/n)||widetilde h(t)|{text d}t} le frac{G}{n}int_0^{a}{|widetilde h(t)|{text d}t} le frac{aGH}{n} to 0$$
just for curiosity, in general:
If $h(x)$ is Lebesgue measurable and periodic in $mathbb R$, $I$ is any interval, $g(x) in mathcal L(I)$, we have
$$lim_{|lambda| to +infty}int_I {g(x)h(lambda x){text d}x}=left(frac1{T}int_0^{T}h(x){text d}xright)left(int_I{g(x){text d}x}right)$$
under the meaning of Lebesgue integration.
$endgroup$
add a comment |
$begingroup$
(edited for complement of some critical steps)
I think your assumption actually is If $g(x),h(x)$ are continuous, and $h(x)$ is periodic function with a period $T$.
I will give a hint under this assumption (some details may not be so strict), let
$$widetilde h(x)=h(x)-frac1{T} int_0^{T}{h(t){text d}t}$$
you will get
$$int_0^{T}{widetilde h(x){text d}x}=int_0^{T}{h(x){text d}x}-int_0^{T}{left( frac1{T}int_0^{T}{h(t){text d}t}right){text d}x}=0$$
so you just need to prove
$$lim_{nto infty}int_0^{T}{g(x)widetilde h(nx){text d}x}=left(frac1{T}int_0^{T}widetilde h(x){text d}xright)left(int_0^{T}{g(x){text d}x}right)=0$$
let $t=nx$ (here I assume $n$ is any positive real number), where $[n]$ means the integer part of $n$ and $a=T(n-[n])<T$
$$begin{aligned}
int_0^{T}{g(x)widetilde h(nx){text d}x}
& = frac1{n} int_0^{[n]T+a}{g(t/n)widetilde h(t){text d}t} \
& = frac1{n} sum_{k=0}^{[n]} int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} + frac1{n} int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t}
end{aligned}$$
the continuity of $g(x)$ suggests that $g(t/n)$ in the $k$th period should almost performance as a constant when $ntoinfty$, thus for any $k$
$$int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} to g(t_{k}) int_{kT}^{(k+1)T}{widetilde h(t){text d}t} = 0$$
as well notice that $g(x),h(x)$ are continuous, which means they are bounded in the period, assume $|g(x)|le G$, $|widetilde h(x)|le H$
$$frac1{n} left| int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t} right| le frac1{n} int_{[n]T}^{[n]T+a} {|g(t/n)||widetilde h(t)|{text d}t} le frac{G}{n}int_0^{a}{|widetilde h(t)|{text d}t} le frac{aGH}{n} to 0$$
just for curiosity, in general:
If $h(x)$ is Lebesgue measurable and periodic in $mathbb R$, $I$ is any interval, $g(x) in mathcal L(I)$, we have
$$lim_{|lambda| to +infty}int_I {g(x)h(lambda x){text d}x}=left(frac1{T}int_0^{T}h(x){text d}xright)left(int_I{g(x){text d}x}right)$$
under the meaning of Lebesgue integration.
$endgroup$
(edited for complement of some critical steps)
I think your assumption actually is If $g(x),h(x)$ are continuous, and $h(x)$ is periodic function with a period $T$.
I will give a hint under this assumption (some details may not be so strict), let
$$widetilde h(x)=h(x)-frac1{T} int_0^{T}{h(t){text d}t}$$
you will get
$$int_0^{T}{widetilde h(x){text d}x}=int_0^{T}{h(x){text d}x}-int_0^{T}{left( frac1{T}int_0^{T}{h(t){text d}t}right){text d}x}=0$$
so you just need to prove
$$lim_{nto infty}int_0^{T}{g(x)widetilde h(nx){text d}x}=left(frac1{T}int_0^{T}widetilde h(x){text d}xright)left(int_0^{T}{g(x){text d}x}right)=0$$
let $t=nx$ (here I assume $n$ is any positive real number), where $[n]$ means the integer part of $n$ and $a=T(n-[n])<T$
$$begin{aligned}
int_0^{T}{g(x)widetilde h(nx){text d}x}
& = frac1{n} int_0^{[n]T+a}{g(t/n)widetilde h(t){text d}t} \
& = frac1{n} sum_{k=0}^{[n]} int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} + frac1{n} int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t}
end{aligned}$$
the continuity of $g(x)$ suggests that $g(t/n)$ in the $k$th period should almost performance as a constant when $ntoinfty$, thus for any $k$
$$int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} to g(t_{k}) int_{kT}^{(k+1)T}{widetilde h(t){text d}t} = 0$$
as well notice that $g(x),h(x)$ are continuous, which means they are bounded in the period, assume $|g(x)|le G$, $|widetilde h(x)|le H$
$$frac1{n} left| int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t} right| le frac1{n} int_{[n]T}^{[n]T+a} {|g(t/n)||widetilde h(t)|{text d}t} le frac{G}{n}int_0^{a}{|widetilde h(t)|{text d}t} le frac{aGH}{n} to 0$$
just for curiosity, in general:
If $h(x)$ is Lebesgue measurable and periodic in $mathbb R$, $I$ is any interval, $g(x) in mathcal L(I)$, we have
$$lim_{|lambda| to +infty}int_I {g(x)h(lambda x){text d}x}=left(frac1{T}int_0^{T}h(x){text d}xright)left(int_I{g(x){text d}x}right)$$
under the meaning of Lebesgue integration.
edited Feb 8 at 18:37
answered Dec 19 '18 at 4:46
NanayajitzukiNanayajitzuki
3535
3535
add a comment |
add a comment |
$begingroup$
If the periodic one is $g$, the equality does not hold. For instance, take $g(x)=sin^2x$, $h(x)=x$, $T=pi$.
When $h$ has period $T$, use first the substitution $u=nx$ to get
$$
int_0^Tg(x),h(nx),dx=frac1nint_0^{nT} g(x/n),h(x),dx=frac1nsum_{k=0}^{n-1}int_{kT}^{(k+1)T} g(x/n),h(x),dx.
$$
Next substitute $v=x-kT$, to obtain
begin{align}
int_0^Tg(x),h(nx),dx&=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x+kT),dx=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x),dx\
&=frac1Tint_{0}^{T} left(sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tnright),h(x),dx.
end{align}
Because $g$ is uniformly continuous on $[0,T]$, the values $g(tfrac{x+kT}n)$ are very close to $g(tfrac kTn)$. So
$$
lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tn
=lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{kT}n),frac Tn=int_0^Tg(x),dx.
$$
$endgroup$
add a comment |
$begingroup$
If the periodic one is $g$, the equality does not hold. For instance, take $g(x)=sin^2x$, $h(x)=x$, $T=pi$.
When $h$ has period $T$, use first the substitution $u=nx$ to get
$$
int_0^Tg(x),h(nx),dx=frac1nint_0^{nT} g(x/n),h(x),dx=frac1nsum_{k=0}^{n-1}int_{kT}^{(k+1)T} g(x/n),h(x),dx.
$$
Next substitute $v=x-kT$, to obtain
begin{align}
int_0^Tg(x),h(nx),dx&=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x+kT),dx=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x),dx\
&=frac1Tint_{0}^{T} left(sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tnright),h(x),dx.
end{align}
Because $g$ is uniformly continuous on $[0,T]$, the values $g(tfrac{x+kT}n)$ are very close to $g(tfrac kTn)$. So
$$
lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tn
=lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{kT}n),frac Tn=int_0^Tg(x),dx.
$$
$endgroup$
add a comment |
$begingroup$
If the periodic one is $g$, the equality does not hold. For instance, take $g(x)=sin^2x$, $h(x)=x$, $T=pi$.
When $h$ has period $T$, use first the substitution $u=nx$ to get
$$
int_0^Tg(x),h(nx),dx=frac1nint_0^{nT} g(x/n),h(x),dx=frac1nsum_{k=0}^{n-1}int_{kT}^{(k+1)T} g(x/n),h(x),dx.
$$
Next substitute $v=x-kT$, to obtain
begin{align}
int_0^Tg(x),h(nx),dx&=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x+kT),dx=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x),dx\
&=frac1Tint_{0}^{T} left(sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tnright),h(x),dx.
end{align}
Because $g$ is uniformly continuous on $[0,T]$, the values $g(tfrac{x+kT}n)$ are very close to $g(tfrac kTn)$. So
$$
lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tn
=lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{kT}n),frac Tn=int_0^Tg(x),dx.
$$
$endgroup$
If the periodic one is $g$, the equality does not hold. For instance, take $g(x)=sin^2x$, $h(x)=x$, $T=pi$.
When $h$ has period $T$, use first the substitution $u=nx$ to get
$$
int_0^Tg(x),h(nx),dx=frac1nint_0^{nT} g(x/n),h(x),dx=frac1nsum_{k=0}^{n-1}int_{kT}^{(k+1)T} g(x/n),h(x),dx.
$$
Next substitute $v=x-kT$, to obtain
begin{align}
int_0^Tg(x),h(nx),dx&=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x+kT),dx=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x),dx\
&=frac1Tint_{0}^{T} left(sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tnright),h(x),dx.
end{align}
Because $g$ is uniformly continuous on $[0,T]$, the values $g(tfrac{x+kT}n)$ are very close to $g(tfrac kTn)$. So
$$
lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tn
=lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{kT}n),frac Tn=int_0^Tg(x),dx.
$$
answered Dec 19 '18 at 4:38
Martin ArgeramiMartin Argerami
129k1184185
129k1184185
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045934%2fprove-lim-n-to-infty-int-0tgxhnx-dx-cfrac1t-int-0tgxdx-int%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Hello and welcome to MSE! What are your thoughts on this problem? What have you tried so far? What related theorems do you know, like for example the Riemann-Lebesgue Lemma and how did you proof it?
$endgroup$
– F. Conrad
Dec 19 '18 at 3:07
$begingroup$
Do you mean $g(x)$ and $h(x)$, in which $h(x)$ is periodic, or your equation can not fit your assumption.
$endgroup$
– Nanayajitzuki
Dec 19 '18 at 4:07
$begingroup$
@Nanayajitzuki Oh, yes. Thank you for reminding me. I just found this mistake and I ’m correcting it now.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:29
1
$begingroup$
@F.Conrad Thanks for your suggestions. I’ll come to know about the related theorems, like the Riemann-Lebesgue Lemma you mentioned, and rethink the problem.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:42