Prove $lim_{nto infty}int_0^Tg(x)h(nx) dx=cfrac{1}{T}(int_0^Tg(x)dx)(int_0^Th(x)dx)$












0












$begingroup$


If $h(x),g(x)$ continuous, and $h(x)$ is periodic function with a period $T$, then prove:
$$lim_{nto infty}int_0^Tg(x)h(nx) dx=cfrac{1}{T}left(int_0^Tg(x)dxright)left(int_0^Th(x)dxright)$$



I have no idea about this problem. I don’t know how to use the periodicity.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hello and welcome to MSE! What are your thoughts on this problem? What have you tried so far? What related theorems do you know, like for example the Riemann-Lebesgue Lemma and how did you proof it?
    $endgroup$
    – F. Conrad
    Dec 19 '18 at 3:07












  • $begingroup$
    Do you mean $g(x)$ and $h(x)$, in which $h(x)$ is periodic, or your equation can not fit your assumption.
    $endgroup$
    – Nanayajitzuki
    Dec 19 '18 at 4:07












  • $begingroup$
    @Nanayajitzuki Oh, yes. Thank you for reminding me. I just found this mistake and I ’m correcting it now.
    $endgroup$
    – Yan Peng
    Dec 19 '18 at 8:29






  • 1




    $begingroup$
    @F.Conrad Thanks for your suggestions. I’ll come to know about the related theorems, like the Riemann-Lebesgue Lemma you mentioned, and rethink the problem.
    $endgroup$
    – Yan Peng
    Dec 19 '18 at 8:42
















0












$begingroup$


If $h(x),g(x)$ continuous, and $h(x)$ is periodic function with a period $T$, then prove:
$$lim_{nto infty}int_0^Tg(x)h(nx) dx=cfrac{1}{T}left(int_0^Tg(x)dxright)left(int_0^Th(x)dxright)$$



I have no idea about this problem. I don’t know how to use the periodicity.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hello and welcome to MSE! What are your thoughts on this problem? What have you tried so far? What related theorems do you know, like for example the Riemann-Lebesgue Lemma and how did you proof it?
    $endgroup$
    – F. Conrad
    Dec 19 '18 at 3:07












  • $begingroup$
    Do you mean $g(x)$ and $h(x)$, in which $h(x)$ is periodic, or your equation can not fit your assumption.
    $endgroup$
    – Nanayajitzuki
    Dec 19 '18 at 4:07












  • $begingroup$
    @Nanayajitzuki Oh, yes. Thank you for reminding me. I just found this mistake and I ’m correcting it now.
    $endgroup$
    – Yan Peng
    Dec 19 '18 at 8:29






  • 1




    $begingroup$
    @F.Conrad Thanks for your suggestions. I’ll come to know about the related theorems, like the Riemann-Lebesgue Lemma you mentioned, and rethink the problem.
    $endgroup$
    – Yan Peng
    Dec 19 '18 at 8:42














0












0








0


2



$begingroup$


If $h(x),g(x)$ continuous, and $h(x)$ is periodic function with a period $T$, then prove:
$$lim_{nto infty}int_0^Tg(x)h(nx) dx=cfrac{1}{T}left(int_0^Tg(x)dxright)left(int_0^Th(x)dxright)$$



I have no idea about this problem. I don’t know how to use the periodicity.










share|cite|improve this question











$endgroup$




If $h(x),g(x)$ continuous, and $h(x)$ is periodic function with a period $T$, then prove:
$$lim_{nto infty}int_0^Tg(x)h(nx) dx=cfrac{1}{T}left(int_0^Tg(x)dxright)left(int_0^Th(x)dxright)$$



I have no idea about this problem. I don’t know how to use the periodicity.







calculus integration limits analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 19 '18 at 18:51









Larry

2,53031131




2,53031131










asked Dec 19 '18 at 2:49









Yan PengYan Peng

185




185








  • 1




    $begingroup$
    Hello and welcome to MSE! What are your thoughts on this problem? What have you tried so far? What related theorems do you know, like for example the Riemann-Lebesgue Lemma and how did you proof it?
    $endgroup$
    – F. Conrad
    Dec 19 '18 at 3:07












  • $begingroup$
    Do you mean $g(x)$ and $h(x)$, in which $h(x)$ is periodic, or your equation can not fit your assumption.
    $endgroup$
    – Nanayajitzuki
    Dec 19 '18 at 4:07












  • $begingroup$
    @Nanayajitzuki Oh, yes. Thank you for reminding me. I just found this mistake and I ’m correcting it now.
    $endgroup$
    – Yan Peng
    Dec 19 '18 at 8:29






  • 1




    $begingroup$
    @F.Conrad Thanks for your suggestions. I’ll come to know about the related theorems, like the Riemann-Lebesgue Lemma you mentioned, and rethink the problem.
    $endgroup$
    – Yan Peng
    Dec 19 '18 at 8:42














  • 1




    $begingroup$
    Hello and welcome to MSE! What are your thoughts on this problem? What have you tried so far? What related theorems do you know, like for example the Riemann-Lebesgue Lemma and how did you proof it?
    $endgroup$
    – F. Conrad
    Dec 19 '18 at 3:07












  • $begingroup$
    Do you mean $g(x)$ and $h(x)$, in which $h(x)$ is periodic, or your equation can not fit your assumption.
    $endgroup$
    – Nanayajitzuki
    Dec 19 '18 at 4:07












  • $begingroup$
    @Nanayajitzuki Oh, yes. Thank you for reminding me. I just found this mistake and I ’m correcting it now.
    $endgroup$
    – Yan Peng
    Dec 19 '18 at 8:29






  • 1




    $begingroup$
    @F.Conrad Thanks for your suggestions. I’ll come to know about the related theorems, like the Riemann-Lebesgue Lemma you mentioned, and rethink the problem.
    $endgroup$
    – Yan Peng
    Dec 19 '18 at 8:42








1




1




$begingroup$
Hello and welcome to MSE! What are your thoughts on this problem? What have you tried so far? What related theorems do you know, like for example the Riemann-Lebesgue Lemma and how did you proof it?
$endgroup$
– F. Conrad
Dec 19 '18 at 3:07






$begingroup$
Hello and welcome to MSE! What are your thoughts on this problem? What have you tried so far? What related theorems do you know, like for example the Riemann-Lebesgue Lemma and how did you proof it?
$endgroup$
– F. Conrad
Dec 19 '18 at 3:07














$begingroup$
Do you mean $g(x)$ and $h(x)$, in which $h(x)$ is periodic, or your equation can not fit your assumption.
$endgroup$
– Nanayajitzuki
Dec 19 '18 at 4:07






$begingroup$
Do you mean $g(x)$ and $h(x)$, in which $h(x)$ is periodic, or your equation can not fit your assumption.
$endgroup$
– Nanayajitzuki
Dec 19 '18 at 4:07














$begingroup$
@Nanayajitzuki Oh, yes. Thank you for reminding me. I just found this mistake and I ’m correcting it now.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:29




$begingroup$
@Nanayajitzuki Oh, yes. Thank you for reminding me. I just found this mistake and I ’m correcting it now.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:29




1




1




$begingroup$
@F.Conrad Thanks for your suggestions. I’ll come to know about the related theorems, like the Riemann-Lebesgue Lemma you mentioned, and rethink the problem.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:42




$begingroup$
@F.Conrad Thanks for your suggestions. I’ll come to know about the related theorems, like the Riemann-Lebesgue Lemma you mentioned, and rethink the problem.
$endgroup$
– Yan Peng
Dec 19 '18 at 8:42










2 Answers
2






active

oldest

votes


















3












$begingroup$

(edited for complement of some critical steps)



I think your assumption actually is If $g(x),h(x)$ are continuous, and $h(x)$ is periodic function with a period $T$.



I will give a hint under this assumption (some details may not be so strict), let



$$widetilde h(x)=h(x)-frac1{T} int_0^{T}{h(t){text d}t}$$



you will get



$$int_0^{T}{widetilde h(x){text d}x}=int_0^{T}{h(x){text d}x}-int_0^{T}{left( frac1{T}int_0^{T}{h(t){text d}t}right){text d}x}=0$$



so you just need to prove



$$lim_{nto infty}int_0^{T}{g(x)widetilde h(nx){text d}x}=left(frac1{T}int_0^{T}widetilde h(x){text d}xright)left(int_0^{T}{g(x){text d}x}right)=0$$



let $t=nx$ (here I assume $n$ is any positive real number), where $[n]$ means the integer part of $n$ and $a=T(n-[n])<T$



$$begin{aligned}
int_0^{T}{g(x)widetilde h(nx){text d}x}
& = frac1{n} int_0^{[n]T+a}{g(t/n)widetilde h(t){text d}t} \
& = frac1{n} sum_{k=0}^{[n]} int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} + frac1{n} int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t}
end{aligned}$$



the continuity of $g(x)$ suggests that $g(t/n)$ in the $k$th period should almost performance as a constant when $ntoinfty$, thus for any $k$



$$int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} to g(t_{k}) int_{kT}^{(k+1)T}{widetilde h(t){text d}t} = 0$$



as well notice that $g(x),h(x)$ are continuous, which means they are bounded in the period, assume $|g(x)|le G$, $|widetilde h(x)|le H$



$$frac1{n} left| int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t} right| le frac1{n} int_{[n]T}^{[n]T+a} {|g(t/n)||widetilde h(t)|{text d}t} le frac{G}{n}int_0^{a}{|widetilde h(t)|{text d}t} le frac{aGH}{n} to 0$$



just for curiosity, in general:



If $h(x)$ is Lebesgue measurable and periodic in $mathbb R$, $I$ is any interval, $g(x) in mathcal L(I)$, we have



$$lim_{|lambda| to +infty}int_I {g(x)h(lambda x){text d}x}=left(frac1{T}int_0^{T}h(x){text d}xright)left(int_I{g(x){text d}x}right)$$



under the meaning of Lebesgue integration.






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    If the periodic one is $g$, the equality does not hold. For instance, take $g(x)=sin^2x$, $h(x)=x$, $T=pi$.



    When $h$ has period $T$, use first the substitution $u=nx$ to get
    $$
    int_0^Tg(x),h(nx),dx=frac1nint_0^{nT} g(x/n),h(x),dx=frac1nsum_{k=0}^{n-1}int_{kT}^{(k+1)T} g(x/n),h(x),dx.
    $$

    Next substitute $v=x-kT$, to obtain
    begin{align}
    int_0^Tg(x),h(nx),dx&=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x+kT),dx=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x),dx\
    &=frac1Tint_{0}^{T} left(sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tnright),h(x),dx.
    end{align}

    Because $g$ is uniformly continuous on $[0,T]$, the values $g(tfrac{x+kT}n)$ are very close to $g(tfrac kTn)$. So
    $$
    lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tn
    =lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{kT}n),frac Tn=int_0^Tg(x),dx.
    $$






    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045934%2fprove-lim-n-to-infty-int-0tgxhnx-dx-cfrac1t-int-0tgxdx-int%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      (edited for complement of some critical steps)



      I think your assumption actually is If $g(x),h(x)$ are continuous, and $h(x)$ is periodic function with a period $T$.



      I will give a hint under this assumption (some details may not be so strict), let



      $$widetilde h(x)=h(x)-frac1{T} int_0^{T}{h(t){text d}t}$$



      you will get



      $$int_0^{T}{widetilde h(x){text d}x}=int_0^{T}{h(x){text d}x}-int_0^{T}{left( frac1{T}int_0^{T}{h(t){text d}t}right){text d}x}=0$$



      so you just need to prove



      $$lim_{nto infty}int_0^{T}{g(x)widetilde h(nx){text d}x}=left(frac1{T}int_0^{T}widetilde h(x){text d}xright)left(int_0^{T}{g(x){text d}x}right)=0$$



      let $t=nx$ (here I assume $n$ is any positive real number), where $[n]$ means the integer part of $n$ and $a=T(n-[n])<T$



      $$begin{aligned}
      int_0^{T}{g(x)widetilde h(nx){text d}x}
      & = frac1{n} int_0^{[n]T+a}{g(t/n)widetilde h(t){text d}t} \
      & = frac1{n} sum_{k=0}^{[n]} int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} + frac1{n} int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t}
      end{aligned}$$



      the continuity of $g(x)$ suggests that $g(t/n)$ in the $k$th period should almost performance as a constant when $ntoinfty$, thus for any $k$



      $$int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} to g(t_{k}) int_{kT}^{(k+1)T}{widetilde h(t){text d}t} = 0$$



      as well notice that $g(x),h(x)$ are continuous, which means they are bounded in the period, assume $|g(x)|le G$, $|widetilde h(x)|le H$



      $$frac1{n} left| int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t} right| le frac1{n} int_{[n]T}^{[n]T+a} {|g(t/n)||widetilde h(t)|{text d}t} le frac{G}{n}int_0^{a}{|widetilde h(t)|{text d}t} le frac{aGH}{n} to 0$$



      just for curiosity, in general:



      If $h(x)$ is Lebesgue measurable and periodic in $mathbb R$, $I$ is any interval, $g(x) in mathcal L(I)$, we have



      $$lim_{|lambda| to +infty}int_I {g(x)h(lambda x){text d}x}=left(frac1{T}int_0^{T}h(x){text d}xright)left(int_I{g(x){text d}x}right)$$



      under the meaning of Lebesgue integration.






      share|cite|improve this answer











      $endgroup$


















        3












        $begingroup$

        (edited for complement of some critical steps)



        I think your assumption actually is If $g(x),h(x)$ are continuous, and $h(x)$ is periodic function with a period $T$.



        I will give a hint under this assumption (some details may not be so strict), let



        $$widetilde h(x)=h(x)-frac1{T} int_0^{T}{h(t){text d}t}$$



        you will get



        $$int_0^{T}{widetilde h(x){text d}x}=int_0^{T}{h(x){text d}x}-int_0^{T}{left( frac1{T}int_0^{T}{h(t){text d}t}right){text d}x}=0$$



        so you just need to prove



        $$lim_{nto infty}int_0^{T}{g(x)widetilde h(nx){text d}x}=left(frac1{T}int_0^{T}widetilde h(x){text d}xright)left(int_0^{T}{g(x){text d}x}right)=0$$



        let $t=nx$ (here I assume $n$ is any positive real number), where $[n]$ means the integer part of $n$ and $a=T(n-[n])<T$



        $$begin{aligned}
        int_0^{T}{g(x)widetilde h(nx){text d}x}
        & = frac1{n} int_0^{[n]T+a}{g(t/n)widetilde h(t){text d}t} \
        & = frac1{n} sum_{k=0}^{[n]} int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} + frac1{n} int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t}
        end{aligned}$$



        the continuity of $g(x)$ suggests that $g(t/n)$ in the $k$th period should almost performance as a constant when $ntoinfty$, thus for any $k$



        $$int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} to g(t_{k}) int_{kT}^{(k+1)T}{widetilde h(t){text d}t} = 0$$



        as well notice that $g(x),h(x)$ are continuous, which means they are bounded in the period, assume $|g(x)|le G$, $|widetilde h(x)|le H$



        $$frac1{n} left| int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t} right| le frac1{n} int_{[n]T}^{[n]T+a} {|g(t/n)||widetilde h(t)|{text d}t} le frac{G}{n}int_0^{a}{|widetilde h(t)|{text d}t} le frac{aGH}{n} to 0$$



        just for curiosity, in general:



        If $h(x)$ is Lebesgue measurable and periodic in $mathbb R$, $I$ is any interval, $g(x) in mathcal L(I)$, we have



        $$lim_{|lambda| to +infty}int_I {g(x)h(lambda x){text d}x}=left(frac1{T}int_0^{T}h(x){text d}xright)left(int_I{g(x){text d}x}right)$$



        under the meaning of Lebesgue integration.






        share|cite|improve this answer











        $endgroup$
















          3












          3








          3





          $begingroup$

          (edited for complement of some critical steps)



          I think your assumption actually is If $g(x),h(x)$ are continuous, and $h(x)$ is periodic function with a period $T$.



          I will give a hint under this assumption (some details may not be so strict), let



          $$widetilde h(x)=h(x)-frac1{T} int_0^{T}{h(t){text d}t}$$



          you will get



          $$int_0^{T}{widetilde h(x){text d}x}=int_0^{T}{h(x){text d}x}-int_0^{T}{left( frac1{T}int_0^{T}{h(t){text d}t}right){text d}x}=0$$



          so you just need to prove



          $$lim_{nto infty}int_0^{T}{g(x)widetilde h(nx){text d}x}=left(frac1{T}int_0^{T}widetilde h(x){text d}xright)left(int_0^{T}{g(x){text d}x}right)=0$$



          let $t=nx$ (here I assume $n$ is any positive real number), where $[n]$ means the integer part of $n$ and $a=T(n-[n])<T$



          $$begin{aligned}
          int_0^{T}{g(x)widetilde h(nx){text d}x}
          & = frac1{n} int_0^{[n]T+a}{g(t/n)widetilde h(t){text d}t} \
          & = frac1{n} sum_{k=0}^{[n]} int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} + frac1{n} int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t}
          end{aligned}$$



          the continuity of $g(x)$ suggests that $g(t/n)$ in the $k$th period should almost performance as a constant when $ntoinfty$, thus for any $k$



          $$int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} to g(t_{k}) int_{kT}^{(k+1)T}{widetilde h(t){text d}t} = 0$$



          as well notice that $g(x),h(x)$ are continuous, which means they are bounded in the period, assume $|g(x)|le G$, $|widetilde h(x)|le H$



          $$frac1{n} left| int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t} right| le frac1{n} int_{[n]T}^{[n]T+a} {|g(t/n)||widetilde h(t)|{text d}t} le frac{G}{n}int_0^{a}{|widetilde h(t)|{text d}t} le frac{aGH}{n} to 0$$



          just for curiosity, in general:



          If $h(x)$ is Lebesgue measurable and periodic in $mathbb R$, $I$ is any interval, $g(x) in mathcal L(I)$, we have



          $$lim_{|lambda| to +infty}int_I {g(x)h(lambda x){text d}x}=left(frac1{T}int_0^{T}h(x){text d}xright)left(int_I{g(x){text d}x}right)$$



          under the meaning of Lebesgue integration.






          share|cite|improve this answer











          $endgroup$



          (edited for complement of some critical steps)



          I think your assumption actually is If $g(x),h(x)$ are continuous, and $h(x)$ is periodic function with a period $T$.



          I will give a hint under this assumption (some details may not be so strict), let



          $$widetilde h(x)=h(x)-frac1{T} int_0^{T}{h(t){text d}t}$$



          you will get



          $$int_0^{T}{widetilde h(x){text d}x}=int_0^{T}{h(x){text d}x}-int_0^{T}{left( frac1{T}int_0^{T}{h(t){text d}t}right){text d}x}=0$$



          so you just need to prove



          $$lim_{nto infty}int_0^{T}{g(x)widetilde h(nx){text d}x}=left(frac1{T}int_0^{T}widetilde h(x){text d}xright)left(int_0^{T}{g(x){text d}x}right)=0$$



          let $t=nx$ (here I assume $n$ is any positive real number), where $[n]$ means the integer part of $n$ and $a=T(n-[n])<T$



          $$begin{aligned}
          int_0^{T}{g(x)widetilde h(nx){text d}x}
          & = frac1{n} int_0^{[n]T+a}{g(t/n)widetilde h(t){text d}t} \
          & = frac1{n} sum_{k=0}^{[n]} int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} + frac1{n} int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t}
          end{aligned}$$



          the continuity of $g(x)$ suggests that $g(t/n)$ in the $k$th period should almost performance as a constant when $ntoinfty$, thus for any $k$



          $$int_{kT}^{(k+1)T}{g(t/n)widetilde h(t){text d}t} to g(t_{k}) int_{kT}^{(k+1)T}{widetilde h(t){text d}t} = 0$$



          as well notice that $g(x),h(x)$ are continuous, which means they are bounded in the period, assume $|g(x)|le G$, $|widetilde h(x)|le H$



          $$frac1{n} left| int_{[n]T}^{[n]T+a} {g(t/n)widetilde h(t){text d}t} right| le frac1{n} int_{[n]T}^{[n]T+a} {|g(t/n)||widetilde h(t)|{text d}t} le frac{G}{n}int_0^{a}{|widetilde h(t)|{text d}t} le frac{aGH}{n} to 0$$



          just for curiosity, in general:



          If $h(x)$ is Lebesgue measurable and periodic in $mathbb R$, $I$ is any interval, $g(x) in mathcal L(I)$, we have



          $$lim_{|lambda| to +infty}int_I {g(x)h(lambda x){text d}x}=left(frac1{T}int_0^{T}h(x){text d}xright)left(int_I{g(x){text d}x}right)$$



          under the meaning of Lebesgue integration.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Feb 8 at 18:37

























          answered Dec 19 '18 at 4:46









          NanayajitzukiNanayajitzuki

          3535




          3535























              1












              $begingroup$

              If the periodic one is $g$, the equality does not hold. For instance, take $g(x)=sin^2x$, $h(x)=x$, $T=pi$.



              When $h$ has period $T$, use first the substitution $u=nx$ to get
              $$
              int_0^Tg(x),h(nx),dx=frac1nint_0^{nT} g(x/n),h(x),dx=frac1nsum_{k=0}^{n-1}int_{kT}^{(k+1)T} g(x/n),h(x),dx.
              $$

              Next substitute $v=x-kT$, to obtain
              begin{align}
              int_0^Tg(x),h(nx),dx&=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x+kT),dx=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x),dx\
              &=frac1Tint_{0}^{T} left(sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tnright),h(x),dx.
              end{align}

              Because $g$ is uniformly continuous on $[0,T]$, the values $g(tfrac{x+kT}n)$ are very close to $g(tfrac kTn)$. So
              $$
              lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tn
              =lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{kT}n),frac Tn=int_0^Tg(x),dx.
              $$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                If the periodic one is $g$, the equality does not hold. For instance, take $g(x)=sin^2x$, $h(x)=x$, $T=pi$.



                When $h$ has period $T$, use first the substitution $u=nx$ to get
                $$
                int_0^Tg(x),h(nx),dx=frac1nint_0^{nT} g(x/n),h(x),dx=frac1nsum_{k=0}^{n-1}int_{kT}^{(k+1)T} g(x/n),h(x),dx.
                $$

                Next substitute $v=x-kT$, to obtain
                begin{align}
                int_0^Tg(x),h(nx),dx&=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x+kT),dx=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x),dx\
                &=frac1Tint_{0}^{T} left(sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tnright),h(x),dx.
                end{align}

                Because $g$ is uniformly continuous on $[0,T]$, the values $g(tfrac{x+kT}n)$ are very close to $g(tfrac kTn)$. So
                $$
                lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tn
                =lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{kT}n),frac Tn=int_0^Tg(x),dx.
                $$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  If the periodic one is $g$, the equality does not hold. For instance, take $g(x)=sin^2x$, $h(x)=x$, $T=pi$.



                  When $h$ has period $T$, use first the substitution $u=nx$ to get
                  $$
                  int_0^Tg(x),h(nx),dx=frac1nint_0^{nT} g(x/n),h(x),dx=frac1nsum_{k=0}^{n-1}int_{kT}^{(k+1)T} g(x/n),h(x),dx.
                  $$

                  Next substitute $v=x-kT$, to obtain
                  begin{align}
                  int_0^Tg(x),h(nx),dx&=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x+kT),dx=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x),dx\
                  &=frac1Tint_{0}^{T} left(sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tnright),h(x),dx.
                  end{align}

                  Because $g$ is uniformly continuous on $[0,T]$, the values $g(tfrac{x+kT}n)$ are very close to $g(tfrac kTn)$. So
                  $$
                  lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tn
                  =lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{kT}n),frac Tn=int_0^Tg(x),dx.
                  $$






                  share|cite|improve this answer









                  $endgroup$



                  If the periodic one is $g$, the equality does not hold. For instance, take $g(x)=sin^2x$, $h(x)=x$, $T=pi$.



                  When $h$ has period $T$, use first the substitution $u=nx$ to get
                  $$
                  int_0^Tg(x),h(nx),dx=frac1nint_0^{nT} g(x/n),h(x),dx=frac1nsum_{k=0}^{n-1}int_{kT}^{(k+1)T} g(x/n),h(x),dx.
                  $$

                  Next substitute $v=x-kT$, to obtain
                  begin{align}
                  int_0^Tg(x),h(nx),dx&=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x+kT),dx=frac1nsum_{k=0}^{n-1}int_{0}^{T} g(tfrac{x+kT}n),h(x),dx\
                  &=frac1Tint_{0}^{T} left(sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tnright),h(x),dx.
                  end{align}

                  Because $g$ is uniformly continuous on $[0,T]$, the values $g(tfrac{x+kT}n)$ are very close to $g(tfrac kTn)$. So
                  $$
                  lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{x+kT}n),frac Tn
                  =lim_{ntoinfty}sum_{k=0}^{n-1} g(tfrac{kT}n),frac Tn=int_0^Tg(x),dx.
                  $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 19 '18 at 4:38









                  Martin ArgeramiMartin Argerami

                  129k1184185




                  129k1184185






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045934%2fprove-lim-n-to-infty-int-0tgxhnx-dx-cfrac1t-int-0tgxdx-int%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Plaza Victoria

                      Puebla de Zaragoza

                      Musa