Request for help to find a closed-form expression for...
$begingroup$
By the comparison test, the series converges.
$$sum_{n=0}^{infty}frac{(2n+15)^2}{(2n+11)^3sqrt{(2n+13)}}=l$$
$$lsimeq0.39483198670640570922670209458869656945532664947383304288146572043505953641$$
(74 digits displayed)
I would like to know if it is possible to find a closed-form expression for $l$.
Edit
I used a PARI/GP function (sumnum) to compute an approximate value of $l$:
gp > #
timer = 1 (on)
gp > p 74
realprecision = 77 significant digits (74 digits displayed)
gp > sumnum(n=0, (2*n+15)^2/(2*n+11)^3/sqrt(2*n+13),sumnuminit([+oo,-1.5]))
time = 15 ms.
%1 = 0.39483198670640570922670209458869656945532664947383304288146572043505953641
gp > sum(k=0,97,binomial(-1/2,k)*(zetahurwitz(k+3/2,11/2)+4*zetahurwitz(k+5/2,11/2)+4*zetahurwitz(k+7/2,11/2)))/2/sqrt(2)
time = 62 ms.
%2 = 0.39483198670640570922670209458869656945532664947383304288146572043505953641
gp > p 400
realprecision = 404 significant digits (400 digits displayed)
gp > sumnum(n=0, (2*n+15)^2/(2*n+11)^3/sqrt(2*n+13),sumnuminit([+oo,-1.5]))
time = 1,078 ms.
%3 = 0.3948319867064057092267020945886965694553266494738330428814657204350595364122729251535099721677148100865638904442238183504239633022203492259575689525638233484603909542517059855919506733374353926795281971622814159109637670427399334579124116308394274900167149611375839262362929064148759669151317574581119034347857659144521214162698550204609725028401793070583608454779328237780415473232520384318559950198
gp > sum(k=0,537,binomial(-1/2,k)*(zetahurwitz(k+3/2,11/2)+4*zetahurwitz(k+5/2,11/2)+4*zetahurwitz(k+7/2,11/2)))/2/sqrt(2)
time = 3,532 ms.
%4 = 0.3948319867064057092267020945886965694553266494738330428814657204350595364122729251535099721677148100865638904442238183504239633022203492259575689525638233484603909542517059855919506733374353926795281971622814159109637670427399334579124116308394274900167149611375839262362929064148759669151317574581119034347857659144521214162698550204609725028401793070583608454779328237780415473232520384318559950198
sequences-and-series closed-form
$endgroup$
add a comment |
$begingroup$
By the comparison test, the series converges.
$$sum_{n=0}^{infty}frac{(2n+15)^2}{(2n+11)^3sqrt{(2n+13)}}=l$$
$$lsimeq0.39483198670640570922670209458869656945532664947383304288146572043505953641$$
(74 digits displayed)
I would like to know if it is possible to find a closed-form expression for $l$.
Edit
I used a PARI/GP function (sumnum) to compute an approximate value of $l$:
gp > #
timer = 1 (on)
gp > p 74
realprecision = 77 significant digits (74 digits displayed)
gp > sumnum(n=0, (2*n+15)^2/(2*n+11)^3/sqrt(2*n+13),sumnuminit([+oo,-1.5]))
time = 15 ms.
%1 = 0.39483198670640570922670209458869656945532664947383304288146572043505953641
gp > sum(k=0,97,binomial(-1/2,k)*(zetahurwitz(k+3/2,11/2)+4*zetahurwitz(k+5/2,11/2)+4*zetahurwitz(k+7/2,11/2)))/2/sqrt(2)
time = 62 ms.
%2 = 0.39483198670640570922670209458869656945532664947383304288146572043505953641
gp > p 400
realprecision = 404 significant digits (400 digits displayed)
gp > sumnum(n=0, (2*n+15)^2/(2*n+11)^3/sqrt(2*n+13),sumnuminit([+oo,-1.5]))
time = 1,078 ms.
%3 = 0.3948319867064057092267020945886965694553266494738330428814657204350595364122729251535099721677148100865638904442238183504239633022203492259575689525638233484603909542517059855919506733374353926795281971622814159109637670427399334579124116308394274900167149611375839262362929064148759669151317574581119034347857659144521214162698550204609725028401793070583608454779328237780415473232520384318559950198
gp > sum(k=0,537,binomial(-1/2,k)*(zetahurwitz(k+3/2,11/2)+4*zetahurwitz(k+5/2,11/2)+4*zetahurwitz(k+7/2,11/2)))/2/sqrt(2)
time = 3,532 ms.
%4 = 0.3948319867064057092267020945886965694553266494738330428814657204350595364122729251535099721677148100865638904442238183504239633022203492259575689525638233484603909542517059855919506733374353926795281971622814159109637670427399334579124116308394274900167149611375839262362929064148759669151317574581119034347857659144521214162698550204609725028401793070583608454779328237780415473232520384318559950198
sequences-and-series closed-form
$endgroup$
6
$begingroup$
Do you have any reason for assuming that it does indeed have a closed form?
$endgroup$
– Cyclohexanol.
Dec 19 '18 at 3:57
$begingroup$
whomever can answer this deserves a bounty
$endgroup$
– clathratus
Dec 19 '18 at 4:33
1
$begingroup$
Just out of curiosity : how did you compute $l$ (what tool) and how many terms did you sum (I suppose billions) ? Cheers.
$endgroup$
– Claude Leibovici
Dec 20 '18 at 5:11
$begingroup$
To Claude Leibovici. Even if previous comments suggest that it may be impossible to find a closed-form expression for l, your contributions are very interesting. Kudos to you.
$endgroup$
– jsafra
Dec 20 '18 at 22:33
$begingroup$
Did you use zetahurwitz(.) in your initial calculation to get $l$ ? If you used the original summation, how many terms did you use for $74$ decimal places ?
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:18
add a comment |
$begingroup$
By the comparison test, the series converges.
$$sum_{n=0}^{infty}frac{(2n+15)^2}{(2n+11)^3sqrt{(2n+13)}}=l$$
$$lsimeq0.39483198670640570922670209458869656945532664947383304288146572043505953641$$
(74 digits displayed)
I would like to know if it is possible to find a closed-form expression for $l$.
Edit
I used a PARI/GP function (sumnum) to compute an approximate value of $l$:
gp > #
timer = 1 (on)
gp > p 74
realprecision = 77 significant digits (74 digits displayed)
gp > sumnum(n=0, (2*n+15)^2/(2*n+11)^3/sqrt(2*n+13),sumnuminit([+oo,-1.5]))
time = 15 ms.
%1 = 0.39483198670640570922670209458869656945532664947383304288146572043505953641
gp > sum(k=0,97,binomial(-1/2,k)*(zetahurwitz(k+3/2,11/2)+4*zetahurwitz(k+5/2,11/2)+4*zetahurwitz(k+7/2,11/2)))/2/sqrt(2)
time = 62 ms.
%2 = 0.39483198670640570922670209458869656945532664947383304288146572043505953641
gp > p 400
realprecision = 404 significant digits (400 digits displayed)
gp > sumnum(n=0, (2*n+15)^2/(2*n+11)^3/sqrt(2*n+13),sumnuminit([+oo,-1.5]))
time = 1,078 ms.
%3 = 0.3948319867064057092267020945886965694553266494738330428814657204350595364122729251535099721677148100865638904442238183504239633022203492259575689525638233484603909542517059855919506733374353926795281971622814159109637670427399334579124116308394274900167149611375839262362929064148759669151317574581119034347857659144521214162698550204609725028401793070583608454779328237780415473232520384318559950198
gp > sum(k=0,537,binomial(-1/2,k)*(zetahurwitz(k+3/2,11/2)+4*zetahurwitz(k+5/2,11/2)+4*zetahurwitz(k+7/2,11/2)))/2/sqrt(2)
time = 3,532 ms.
%4 = 0.3948319867064057092267020945886965694553266494738330428814657204350595364122729251535099721677148100865638904442238183504239633022203492259575689525638233484603909542517059855919506733374353926795281971622814159109637670427399334579124116308394274900167149611375839262362929064148759669151317574581119034347857659144521214162698550204609725028401793070583608454779328237780415473232520384318559950198
sequences-and-series closed-form
$endgroup$
By the comparison test, the series converges.
$$sum_{n=0}^{infty}frac{(2n+15)^2}{(2n+11)^3sqrt{(2n+13)}}=l$$
$$lsimeq0.39483198670640570922670209458869656945532664947383304288146572043505953641$$
(74 digits displayed)
I would like to know if it is possible to find a closed-form expression for $l$.
Edit
I used a PARI/GP function (sumnum) to compute an approximate value of $l$:
gp > #
timer = 1 (on)
gp > p 74
realprecision = 77 significant digits (74 digits displayed)
gp > sumnum(n=0, (2*n+15)^2/(2*n+11)^3/sqrt(2*n+13),sumnuminit([+oo,-1.5]))
time = 15 ms.
%1 = 0.39483198670640570922670209458869656945532664947383304288146572043505953641
gp > sum(k=0,97,binomial(-1/2,k)*(zetahurwitz(k+3/2,11/2)+4*zetahurwitz(k+5/2,11/2)+4*zetahurwitz(k+7/2,11/2)))/2/sqrt(2)
time = 62 ms.
%2 = 0.39483198670640570922670209458869656945532664947383304288146572043505953641
gp > p 400
realprecision = 404 significant digits (400 digits displayed)
gp > sumnum(n=0, (2*n+15)^2/(2*n+11)^3/sqrt(2*n+13),sumnuminit([+oo,-1.5]))
time = 1,078 ms.
%3 = 0.3948319867064057092267020945886965694553266494738330428814657204350595364122729251535099721677148100865638904442238183504239633022203492259575689525638233484603909542517059855919506733374353926795281971622814159109637670427399334579124116308394274900167149611375839262362929064148759669151317574581119034347857659144521214162698550204609725028401793070583608454779328237780415473232520384318559950198
gp > sum(k=0,537,binomial(-1/2,k)*(zetahurwitz(k+3/2,11/2)+4*zetahurwitz(k+5/2,11/2)+4*zetahurwitz(k+7/2,11/2)))/2/sqrt(2)
time = 3,532 ms.
%4 = 0.3948319867064057092267020945886965694553266494738330428814657204350595364122729251535099721677148100865638904442238183504239633022203492259575689525638233484603909542517059855919506733374353926795281971622814159109637670427399334579124116308394274900167149611375839262362929064148759669151317574581119034347857659144521214162698550204609725028401793070583608454779328237780415473232520384318559950198
sequences-and-series closed-form
sequences-and-series closed-form
edited Dec 20 '18 at 22:25
jsafra
asked Dec 19 '18 at 3:10
jsafrajsafra
766
766
6
$begingroup$
Do you have any reason for assuming that it does indeed have a closed form?
$endgroup$
– Cyclohexanol.
Dec 19 '18 at 3:57
$begingroup$
whomever can answer this deserves a bounty
$endgroup$
– clathratus
Dec 19 '18 at 4:33
1
$begingroup$
Just out of curiosity : how did you compute $l$ (what tool) and how many terms did you sum (I suppose billions) ? Cheers.
$endgroup$
– Claude Leibovici
Dec 20 '18 at 5:11
$begingroup$
To Claude Leibovici. Even if previous comments suggest that it may be impossible to find a closed-form expression for l, your contributions are very interesting. Kudos to you.
$endgroup$
– jsafra
Dec 20 '18 at 22:33
$begingroup$
Did you use zetahurwitz(.) in your initial calculation to get $l$ ? If you used the original summation, how many terms did you use for $74$ decimal places ?
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:18
add a comment |
6
$begingroup$
Do you have any reason for assuming that it does indeed have a closed form?
$endgroup$
– Cyclohexanol.
Dec 19 '18 at 3:57
$begingroup$
whomever can answer this deserves a bounty
$endgroup$
– clathratus
Dec 19 '18 at 4:33
1
$begingroup$
Just out of curiosity : how did you compute $l$ (what tool) and how many terms did you sum (I suppose billions) ? Cheers.
$endgroup$
– Claude Leibovici
Dec 20 '18 at 5:11
$begingroup$
To Claude Leibovici. Even if previous comments suggest that it may be impossible to find a closed-form expression for l, your contributions are very interesting. Kudos to you.
$endgroup$
– jsafra
Dec 20 '18 at 22:33
$begingroup$
Did you use zetahurwitz(.) in your initial calculation to get $l$ ? If you used the original summation, how many terms did you use for $74$ decimal places ?
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:18
6
6
$begingroup$
Do you have any reason for assuming that it does indeed have a closed form?
$endgroup$
– Cyclohexanol.
Dec 19 '18 at 3:57
$begingroup$
Do you have any reason for assuming that it does indeed have a closed form?
$endgroup$
– Cyclohexanol.
Dec 19 '18 at 3:57
$begingroup$
whomever can answer this deserves a bounty
$endgroup$
– clathratus
Dec 19 '18 at 4:33
$begingroup$
whomever can answer this deserves a bounty
$endgroup$
– clathratus
Dec 19 '18 at 4:33
1
1
$begingroup$
Just out of curiosity : how did you compute $l$ (what tool) and how many terms did you sum (I suppose billions) ? Cheers.
$endgroup$
– Claude Leibovici
Dec 20 '18 at 5:11
$begingroup$
Just out of curiosity : how did you compute $l$ (what tool) and how many terms did you sum (I suppose billions) ? Cheers.
$endgroup$
– Claude Leibovici
Dec 20 '18 at 5:11
$begingroup$
To Claude Leibovici. Even if previous comments suggest that it may be impossible to find a closed-form expression for l, your contributions are very interesting. Kudos to you.
$endgroup$
– jsafra
Dec 20 '18 at 22:33
$begingroup$
To Claude Leibovici. Even if previous comments suggest that it may be impossible to find a closed-form expression for l, your contributions are very interesting. Kudos to you.
$endgroup$
– jsafra
Dec 20 '18 at 22:33
$begingroup$
Did you use zetahurwitz(.) in your initial calculation to get $l$ ? If you used the original summation, how many terms did you use for $74$ decimal places ?
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:18
$begingroup$
Did you use zetahurwitz(.) in your initial calculation to get $l$ ? If you used the original summation, how many terms did you use for $74$ decimal places ?
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:18
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Not a closed form but a rather good approximation of it.
Rewriting as $$a_n=frac{(2n+15)^2}{(2n+11)^3sqrt{2n+13}}=frac{(2n+15)^2}{(2n+11)^3sqrt{2n+11+2}}=frac{(2n+15)^2}{(2n+11)^{frac 72}sqrt{1+frac 2{2n+11}}}$$ we can write
$$frac 1{sqrt{1+frac 2{2n+11}}}=sum_{k=0}^infty binom{-frac{1}{2}}{k}frac{2^k}{(2n+11)^k}$$ and then face summations of terms
$$S_k=sum_{n=0}^inftyfrac{(2n+15)^2}{(2n+11)^{k+frac 72}}=2^{-k-frac{3}{2}} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ and then for the considered summation
$$Sigma=sum_{n=0}^infty frac{(2n+15)^2}{(2n+11)^3sqrt{2n+13}}$$ So, the partial sums
$$Sigma_p=frac 1{2sqrt 2}sum_{k=0}^p binom{-frac{1}{2}}{k} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ Computing
$$left(
begin{array}{cc}
p & Sigma_p \
5 & 0.39483148307398830445048206504782536496698034745960346801382376024 \
10 & 0.39483198676616324735777911451436673248113391244073226133701558847 \
15 & 0.39483198670639658527502248284985700122310258168712958250026452734 \
20 & 0.39483198670640571076206255275333399438974388443990146144695977886 \
25 & 0.39483198670640570922643131344152894240169346679460070946980052257 \
30 & 0.39483198670640570922670214360763624644791582367286943018650562365 \
35 & 0.39483198670640570922670209457967764179263574295643280410747243813 \
40 & 0.39483198670640570922670209458869824722904384200792304484978282169 \
45 & 0.39483198670640570922670209458869656914069678422236918330533995116 \
50 & 0.39483198670640570922670209458869656945538601634396101492730552390 \
55 & 0.39483198670640570922670209458869656945532663821679612114844784572 \
60 & 0.39483198670640570922670209458869656945532664947597620995355367822 \
65 & 0.39483198670640570922670209458869656945532664947383263347402134364 \
70 & 0.39483198670640570922670209458869656945532664947383304295989988132 \
75 & 0.39483198670640570922670209458869656945532664947383304288145065669 \
80 & 0.39483198670640570922670209458869656945532664947383304288146572333 \
85 & 0.39483198670640570922670209458869656945532664947383304288146572043 \
90 & 0.39483198670640570922670209458869656945532664947383304288146572044 \
95 & 0.39483198670640570922670209458869656945532664947383304288146572044 \
100 & 0.39483198670640570922670209458869656945532664947383304288146572044
end{array}
right)$$
Edit
In order to know how many terms have to be added for $p$ significant digits, since we face an alternatin series, consider
$$a_k=frac 1{2sqrt 2}binom{-frac{1}{2}}{k} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ A quick and dirty linear regression (built for $10 leq k leq 1000$ by steps of $10$) shows that (and this is an almost perfect fit)
$$log_{10}(|a_k|)=-0.740989, k-2.51445$$ So, for $p$ exact digits, we need to sum up $lceil 1.35, p -3.40 rceil$ terms (just as reflected by the values in the above table). For $74$ digits as given in the post, then $k=97$ which has been verified. Using the original summation, I suppose that billions of terms have been added (summing from $n=0$ to $n=10^9$ leading to $0.39481$). This look normal since, for large values of $n$, $frac{a_{n+1}}{a_n}=1-frac{3}{2 n}+Oleft(frac{1}{n^2}right)$ which is extremely slow.
$endgroup$
$begingroup$
What field of math is this? it's fascinating
$endgroup$
– clathratus
Dec 20 '18 at 22:37
$begingroup$
Claude Leibovici's work is often, as in this case, quite impressive.
$endgroup$
– marty cohen
Dec 20 '18 at 23:06
$begingroup$
@martycohen. Be sure that, this coming from you, I really appreciate ! Thanks.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:12
$begingroup$
@clathratus. At least, part of the ones I do enjoy ! Cheers.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:29
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045951%2frequest-for-help-to-find-a-closed-form-expression-for-sum-n-0-infty-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Not a closed form but a rather good approximation of it.
Rewriting as $$a_n=frac{(2n+15)^2}{(2n+11)^3sqrt{2n+13}}=frac{(2n+15)^2}{(2n+11)^3sqrt{2n+11+2}}=frac{(2n+15)^2}{(2n+11)^{frac 72}sqrt{1+frac 2{2n+11}}}$$ we can write
$$frac 1{sqrt{1+frac 2{2n+11}}}=sum_{k=0}^infty binom{-frac{1}{2}}{k}frac{2^k}{(2n+11)^k}$$ and then face summations of terms
$$S_k=sum_{n=0}^inftyfrac{(2n+15)^2}{(2n+11)^{k+frac 72}}=2^{-k-frac{3}{2}} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ and then for the considered summation
$$Sigma=sum_{n=0}^infty frac{(2n+15)^2}{(2n+11)^3sqrt{2n+13}}$$ So, the partial sums
$$Sigma_p=frac 1{2sqrt 2}sum_{k=0}^p binom{-frac{1}{2}}{k} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ Computing
$$left(
begin{array}{cc}
p & Sigma_p \
5 & 0.39483148307398830445048206504782536496698034745960346801382376024 \
10 & 0.39483198676616324735777911451436673248113391244073226133701558847 \
15 & 0.39483198670639658527502248284985700122310258168712958250026452734 \
20 & 0.39483198670640571076206255275333399438974388443990146144695977886 \
25 & 0.39483198670640570922643131344152894240169346679460070946980052257 \
30 & 0.39483198670640570922670214360763624644791582367286943018650562365 \
35 & 0.39483198670640570922670209457967764179263574295643280410747243813 \
40 & 0.39483198670640570922670209458869824722904384200792304484978282169 \
45 & 0.39483198670640570922670209458869656914069678422236918330533995116 \
50 & 0.39483198670640570922670209458869656945538601634396101492730552390 \
55 & 0.39483198670640570922670209458869656945532663821679612114844784572 \
60 & 0.39483198670640570922670209458869656945532664947597620995355367822 \
65 & 0.39483198670640570922670209458869656945532664947383263347402134364 \
70 & 0.39483198670640570922670209458869656945532664947383304295989988132 \
75 & 0.39483198670640570922670209458869656945532664947383304288145065669 \
80 & 0.39483198670640570922670209458869656945532664947383304288146572333 \
85 & 0.39483198670640570922670209458869656945532664947383304288146572043 \
90 & 0.39483198670640570922670209458869656945532664947383304288146572044 \
95 & 0.39483198670640570922670209458869656945532664947383304288146572044 \
100 & 0.39483198670640570922670209458869656945532664947383304288146572044
end{array}
right)$$
Edit
In order to know how many terms have to be added for $p$ significant digits, since we face an alternatin series, consider
$$a_k=frac 1{2sqrt 2}binom{-frac{1}{2}}{k} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ A quick and dirty linear regression (built for $10 leq k leq 1000$ by steps of $10$) shows that (and this is an almost perfect fit)
$$log_{10}(|a_k|)=-0.740989, k-2.51445$$ So, for $p$ exact digits, we need to sum up $lceil 1.35, p -3.40 rceil$ terms (just as reflected by the values in the above table). For $74$ digits as given in the post, then $k=97$ which has been verified. Using the original summation, I suppose that billions of terms have been added (summing from $n=0$ to $n=10^9$ leading to $0.39481$). This look normal since, for large values of $n$, $frac{a_{n+1}}{a_n}=1-frac{3}{2 n}+Oleft(frac{1}{n^2}right)$ which is extremely slow.
$endgroup$
$begingroup$
What field of math is this? it's fascinating
$endgroup$
– clathratus
Dec 20 '18 at 22:37
$begingroup$
Claude Leibovici's work is often, as in this case, quite impressive.
$endgroup$
– marty cohen
Dec 20 '18 at 23:06
$begingroup$
@martycohen. Be sure that, this coming from you, I really appreciate ! Thanks.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:12
$begingroup$
@clathratus. At least, part of the ones I do enjoy ! Cheers.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:29
add a comment |
$begingroup$
Not a closed form but a rather good approximation of it.
Rewriting as $$a_n=frac{(2n+15)^2}{(2n+11)^3sqrt{2n+13}}=frac{(2n+15)^2}{(2n+11)^3sqrt{2n+11+2}}=frac{(2n+15)^2}{(2n+11)^{frac 72}sqrt{1+frac 2{2n+11}}}$$ we can write
$$frac 1{sqrt{1+frac 2{2n+11}}}=sum_{k=0}^infty binom{-frac{1}{2}}{k}frac{2^k}{(2n+11)^k}$$ and then face summations of terms
$$S_k=sum_{n=0}^inftyfrac{(2n+15)^2}{(2n+11)^{k+frac 72}}=2^{-k-frac{3}{2}} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ and then for the considered summation
$$Sigma=sum_{n=0}^infty frac{(2n+15)^2}{(2n+11)^3sqrt{2n+13}}$$ So, the partial sums
$$Sigma_p=frac 1{2sqrt 2}sum_{k=0}^p binom{-frac{1}{2}}{k} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ Computing
$$left(
begin{array}{cc}
p & Sigma_p \
5 & 0.39483148307398830445048206504782536496698034745960346801382376024 \
10 & 0.39483198676616324735777911451436673248113391244073226133701558847 \
15 & 0.39483198670639658527502248284985700122310258168712958250026452734 \
20 & 0.39483198670640571076206255275333399438974388443990146144695977886 \
25 & 0.39483198670640570922643131344152894240169346679460070946980052257 \
30 & 0.39483198670640570922670214360763624644791582367286943018650562365 \
35 & 0.39483198670640570922670209457967764179263574295643280410747243813 \
40 & 0.39483198670640570922670209458869824722904384200792304484978282169 \
45 & 0.39483198670640570922670209458869656914069678422236918330533995116 \
50 & 0.39483198670640570922670209458869656945538601634396101492730552390 \
55 & 0.39483198670640570922670209458869656945532663821679612114844784572 \
60 & 0.39483198670640570922670209458869656945532664947597620995355367822 \
65 & 0.39483198670640570922670209458869656945532664947383263347402134364 \
70 & 0.39483198670640570922670209458869656945532664947383304295989988132 \
75 & 0.39483198670640570922670209458869656945532664947383304288145065669 \
80 & 0.39483198670640570922670209458869656945532664947383304288146572333 \
85 & 0.39483198670640570922670209458869656945532664947383304288146572043 \
90 & 0.39483198670640570922670209458869656945532664947383304288146572044 \
95 & 0.39483198670640570922670209458869656945532664947383304288146572044 \
100 & 0.39483198670640570922670209458869656945532664947383304288146572044
end{array}
right)$$
Edit
In order to know how many terms have to be added for $p$ significant digits, since we face an alternatin series, consider
$$a_k=frac 1{2sqrt 2}binom{-frac{1}{2}}{k} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ A quick and dirty linear regression (built for $10 leq k leq 1000$ by steps of $10$) shows that (and this is an almost perfect fit)
$$log_{10}(|a_k|)=-0.740989, k-2.51445$$ So, for $p$ exact digits, we need to sum up $lceil 1.35, p -3.40 rceil$ terms (just as reflected by the values in the above table). For $74$ digits as given in the post, then $k=97$ which has been verified. Using the original summation, I suppose that billions of terms have been added (summing from $n=0$ to $n=10^9$ leading to $0.39481$). This look normal since, for large values of $n$, $frac{a_{n+1}}{a_n}=1-frac{3}{2 n}+Oleft(frac{1}{n^2}right)$ which is extremely slow.
$endgroup$
$begingroup$
What field of math is this? it's fascinating
$endgroup$
– clathratus
Dec 20 '18 at 22:37
$begingroup$
Claude Leibovici's work is often, as in this case, quite impressive.
$endgroup$
– marty cohen
Dec 20 '18 at 23:06
$begingroup$
@martycohen. Be sure that, this coming from you, I really appreciate ! Thanks.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:12
$begingroup$
@clathratus. At least, part of the ones I do enjoy ! Cheers.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:29
add a comment |
$begingroup$
Not a closed form but a rather good approximation of it.
Rewriting as $$a_n=frac{(2n+15)^2}{(2n+11)^3sqrt{2n+13}}=frac{(2n+15)^2}{(2n+11)^3sqrt{2n+11+2}}=frac{(2n+15)^2}{(2n+11)^{frac 72}sqrt{1+frac 2{2n+11}}}$$ we can write
$$frac 1{sqrt{1+frac 2{2n+11}}}=sum_{k=0}^infty binom{-frac{1}{2}}{k}frac{2^k}{(2n+11)^k}$$ and then face summations of terms
$$S_k=sum_{n=0}^inftyfrac{(2n+15)^2}{(2n+11)^{k+frac 72}}=2^{-k-frac{3}{2}} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ and then for the considered summation
$$Sigma=sum_{n=0}^infty frac{(2n+15)^2}{(2n+11)^3sqrt{2n+13}}$$ So, the partial sums
$$Sigma_p=frac 1{2sqrt 2}sum_{k=0}^p binom{-frac{1}{2}}{k} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ Computing
$$left(
begin{array}{cc}
p & Sigma_p \
5 & 0.39483148307398830445048206504782536496698034745960346801382376024 \
10 & 0.39483198676616324735777911451436673248113391244073226133701558847 \
15 & 0.39483198670639658527502248284985700122310258168712958250026452734 \
20 & 0.39483198670640571076206255275333399438974388443990146144695977886 \
25 & 0.39483198670640570922643131344152894240169346679460070946980052257 \
30 & 0.39483198670640570922670214360763624644791582367286943018650562365 \
35 & 0.39483198670640570922670209457967764179263574295643280410747243813 \
40 & 0.39483198670640570922670209458869824722904384200792304484978282169 \
45 & 0.39483198670640570922670209458869656914069678422236918330533995116 \
50 & 0.39483198670640570922670209458869656945538601634396101492730552390 \
55 & 0.39483198670640570922670209458869656945532663821679612114844784572 \
60 & 0.39483198670640570922670209458869656945532664947597620995355367822 \
65 & 0.39483198670640570922670209458869656945532664947383263347402134364 \
70 & 0.39483198670640570922670209458869656945532664947383304295989988132 \
75 & 0.39483198670640570922670209458869656945532664947383304288145065669 \
80 & 0.39483198670640570922670209458869656945532664947383304288146572333 \
85 & 0.39483198670640570922670209458869656945532664947383304288146572043 \
90 & 0.39483198670640570922670209458869656945532664947383304288146572044 \
95 & 0.39483198670640570922670209458869656945532664947383304288146572044 \
100 & 0.39483198670640570922670209458869656945532664947383304288146572044
end{array}
right)$$
Edit
In order to know how many terms have to be added for $p$ significant digits, since we face an alternatin series, consider
$$a_k=frac 1{2sqrt 2}binom{-frac{1}{2}}{k} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ A quick and dirty linear regression (built for $10 leq k leq 1000$ by steps of $10$) shows that (and this is an almost perfect fit)
$$log_{10}(|a_k|)=-0.740989, k-2.51445$$ So, for $p$ exact digits, we need to sum up $lceil 1.35, p -3.40 rceil$ terms (just as reflected by the values in the above table). For $74$ digits as given in the post, then $k=97$ which has been verified. Using the original summation, I suppose that billions of terms have been added (summing from $n=0$ to $n=10^9$ leading to $0.39481$). This look normal since, for large values of $n$, $frac{a_{n+1}}{a_n}=1-frac{3}{2 n}+Oleft(frac{1}{n^2}right)$ which is extremely slow.
$endgroup$
Not a closed form but a rather good approximation of it.
Rewriting as $$a_n=frac{(2n+15)^2}{(2n+11)^3sqrt{2n+13}}=frac{(2n+15)^2}{(2n+11)^3sqrt{2n+11+2}}=frac{(2n+15)^2}{(2n+11)^{frac 72}sqrt{1+frac 2{2n+11}}}$$ we can write
$$frac 1{sqrt{1+frac 2{2n+11}}}=sum_{k=0}^infty binom{-frac{1}{2}}{k}frac{2^k}{(2n+11)^k}$$ and then face summations of terms
$$S_k=sum_{n=0}^inftyfrac{(2n+15)^2}{(2n+11)^{k+frac 72}}=2^{-k-frac{3}{2}} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ and then for the considered summation
$$Sigma=sum_{n=0}^infty frac{(2n+15)^2}{(2n+11)^3sqrt{2n+13}}$$ So, the partial sums
$$Sigma_p=frac 1{2sqrt 2}sum_{k=0}^p binom{-frac{1}{2}}{k} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ Computing
$$left(
begin{array}{cc}
p & Sigma_p \
5 & 0.39483148307398830445048206504782536496698034745960346801382376024 \
10 & 0.39483198676616324735777911451436673248113391244073226133701558847 \
15 & 0.39483198670639658527502248284985700122310258168712958250026452734 \
20 & 0.39483198670640571076206255275333399438974388443990146144695977886 \
25 & 0.39483198670640570922643131344152894240169346679460070946980052257 \
30 & 0.39483198670640570922670214360763624644791582367286943018650562365 \
35 & 0.39483198670640570922670209457967764179263574295643280410747243813 \
40 & 0.39483198670640570922670209458869824722904384200792304484978282169 \
45 & 0.39483198670640570922670209458869656914069678422236918330533995116 \
50 & 0.39483198670640570922670209458869656945538601634396101492730552390 \
55 & 0.39483198670640570922670209458869656945532663821679612114844784572 \
60 & 0.39483198670640570922670209458869656945532664947597620995355367822 \
65 & 0.39483198670640570922670209458869656945532664947383263347402134364 \
70 & 0.39483198670640570922670209458869656945532664947383304295989988132 \
75 & 0.39483198670640570922670209458869656945532664947383304288145065669 \
80 & 0.39483198670640570922670209458869656945532664947383304288146572333 \
85 & 0.39483198670640570922670209458869656945532664947383304288146572043 \
90 & 0.39483198670640570922670209458869656945532664947383304288146572044 \
95 & 0.39483198670640570922670209458869656945532664947383304288146572044 \
100 & 0.39483198670640570922670209458869656945532664947383304288146572044
end{array}
right)$$
Edit
In order to know how many terms have to be added for $p$ significant digits, since we face an alternatin series, consider
$$a_k=frac 1{2sqrt 2}binom{-frac{1}{2}}{k} left(zeta left(k+frac{3}{2},frac{11}{2}right)+4 zeta
left(k+frac{5}{2},frac{11}{2}right)+4 zeta
left(k+frac{7}{2},frac{11}{2}right)right)$$ A quick and dirty linear regression (built for $10 leq k leq 1000$ by steps of $10$) shows that (and this is an almost perfect fit)
$$log_{10}(|a_k|)=-0.740989, k-2.51445$$ So, for $p$ exact digits, we need to sum up $lceil 1.35, p -3.40 rceil$ terms (just as reflected by the values in the above table). For $74$ digits as given in the post, then $k=97$ which has been verified. Using the original summation, I suppose that billions of terms have been added (summing from $n=0$ to $n=10^9$ leading to $0.39481$). This look normal since, for large values of $n$, $frac{a_{n+1}}{a_n}=1-frac{3}{2 n}+Oleft(frac{1}{n^2}right)$ which is extremely slow.
edited Dec 20 '18 at 23:26
Barry Cipra
60.5k655129
60.5k655129
answered Dec 19 '18 at 6:00
Claude LeiboviciClaude Leibovici
125k1158136
125k1158136
$begingroup$
What field of math is this? it's fascinating
$endgroup$
– clathratus
Dec 20 '18 at 22:37
$begingroup$
Claude Leibovici's work is often, as in this case, quite impressive.
$endgroup$
– marty cohen
Dec 20 '18 at 23:06
$begingroup$
@martycohen. Be sure that, this coming from you, I really appreciate ! Thanks.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:12
$begingroup$
@clathratus. At least, part of the ones I do enjoy ! Cheers.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:29
add a comment |
$begingroup$
What field of math is this? it's fascinating
$endgroup$
– clathratus
Dec 20 '18 at 22:37
$begingroup$
Claude Leibovici's work is often, as in this case, quite impressive.
$endgroup$
– marty cohen
Dec 20 '18 at 23:06
$begingroup$
@martycohen. Be sure that, this coming from you, I really appreciate ! Thanks.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:12
$begingroup$
@clathratus. At least, part of the ones I do enjoy ! Cheers.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:29
$begingroup$
What field of math is this? it's fascinating
$endgroup$
– clathratus
Dec 20 '18 at 22:37
$begingroup$
What field of math is this? it's fascinating
$endgroup$
– clathratus
Dec 20 '18 at 22:37
$begingroup$
Claude Leibovici's work is often, as in this case, quite impressive.
$endgroup$
– marty cohen
Dec 20 '18 at 23:06
$begingroup$
Claude Leibovici's work is often, as in this case, quite impressive.
$endgroup$
– marty cohen
Dec 20 '18 at 23:06
$begingroup$
@martycohen. Be sure that, this coming from you, I really appreciate ! Thanks.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:12
$begingroup$
@martycohen. Be sure that, this coming from you, I really appreciate ! Thanks.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:12
$begingroup$
@clathratus. At least, part of the ones I do enjoy ! Cheers.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:29
$begingroup$
@clathratus. At least, part of the ones I do enjoy ! Cheers.
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:29
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045951%2frequest-for-help-to-find-a-closed-form-expression-for-sum-n-0-infty-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
6
$begingroup$
Do you have any reason for assuming that it does indeed have a closed form?
$endgroup$
– Cyclohexanol.
Dec 19 '18 at 3:57
$begingroup$
whomever can answer this deserves a bounty
$endgroup$
– clathratus
Dec 19 '18 at 4:33
1
$begingroup$
Just out of curiosity : how did you compute $l$ (what tool) and how many terms did you sum (I suppose billions) ? Cheers.
$endgroup$
– Claude Leibovici
Dec 20 '18 at 5:11
$begingroup$
To Claude Leibovici. Even if previous comments suggest that it may be impossible to find a closed-form expression for l, your contributions are very interesting. Kudos to you.
$endgroup$
– jsafra
Dec 20 '18 at 22:33
$begingroup$
Did you use zetahurwitz(.) in your initial calculation to get $l$ ? If you used the original summation, how many terms did you use for $74$ decimal places ?
$endgroup$
– Claude Leibovici
Dec 21 '18 at 4:18