$lim _{xrightarrow c}f(x)=L$ if and only if $lim_{xrightarrow0}f(x+c)=L$
$begingroup$
Let $f:= mathbb{R}tomathbb{R}$ and let $cinmathbb{R}$. Show that $lim _{xrightarrow c}f(x)=L$ if and only if $lim_{xrightarrow0}f(x+c)=L$.
From the definition of limit, we get that it is enough to show:
$forall$ $varepsilon>0$ $exists$ $delta>0$ s.t. if $|x-c|<delta$ then $|f(x)-L|<varepsilon$
$Leftrightarrow$ $forall$ $varepsilon_0>0$ $exists$ $delta_0>0$ s.t. if $|x|<delta_0$ then $|f(x+c)-L|<varepsilon_0$
I can replace $x$ by $x+c$ everywhere in statement for the if $(Rightarrow)$ part. But, I am not sure this is the correct method. What I need to do is manipulate the inequalities in each to get the other. But, I am not sure how to proceed with that.
real-analysis limits analysis
$endgroup$
add a comment |
$begingroup$
Let $f:= mathbb{R}tomathbb{R}$ and let $cinmathbb{R}$. Show that $lim _{xrightarrow c}f(x)=L$ if and only if $lim_{xrightarrow0}f(x+c)=L$.
From the definition of limit, we get that it is enough to show:
$forall$ $varepsilon>0$ $exists$ $delta>0$ s.t. if $|x-c|<delta$ then $|f(x)-L|<varepsilon$
$Leftrightarrow$ $forall$ $varepsilon_0>0$ $exists$ $delta_0>0$ s.t. if $|x|<delta_0$ then $|f(x+c)-L|<varepsilon_0$
I can replace $x$ by $x+c$ everywhere in statement for the if $(Rightarrow)$ part. But, I am not sure this is the correct method. What I need to do is manipulate the inequalities in each to get the other. But, I am not sure how to proceed with that.
real-analysis limits analysis
$endgroup$
4
$begingroup$
You mean $lim_{x to c} f(x) = L$ if and only if $lim_{x to 0} f(x+c) = L$.
$endgroup$
– Robert Israel
Dec 19 '18 at 3:03
$begingroup$
@RobertIsrael corrected!
$endgroup$
– Za Ira
Dec 19 '18 at 3:07
add a comment |
$begingroup$
Let $f:= mathbb{R}tomathbb{R}$ and let $cinmathbb{R}$. Show that $lim _{xrightarrow c}f(x)=L$ if and only if $lim_{xrightarrow0}f(x+c)=L$.
From the definition of limit, we get that it is enough to show:
$forall$ $varepsilon>0$ $exists$ $delta>0$ s.t. if $|x-c|<delta$ then $|f(x)-L|<varepsilon$
$Leftrightarrow$ $forall$ $varepsilon_0>0$ $exists$ $delta_0>0$ s.t. if $|x|<delta_0$ then $|f(x+c)-L|<varepsilon_0$
I can replace $x$ by $x+c$ everywhere in statement for the if $(Rightarrow)$ part. But, I am not sure this is the correct method. What I need to do is manipulate the inequalities in each to get the other. But, I am not sure how to proceed with that.
real-analysis limits analysis
$endgroup$
Let $f:= mathbb{R}tomathbb{R}$ and let $cinmathbb{R}$. Show that $lim _{xrightarrow c}f(x)=L$ if and only if $lim_{xrightarrow0}f(x+c)=L$.
From the definition of limit, we get that it is enough to show:
$forall$ $varepsilon>0$ $exists$ $delta>0$ s.t. if $|x-c|<delta$ then $|f(x)-L|<varepsilon$
$Leftrightarrow$ $forall$ $varepsilon_0>0$ $exists$ $delta_0>0$ s.t. if $|x|<delta_0$ then $|f(x+c)-L|<varepsilon_0$
I can replace $x$ by $x+c$ everywhere in statement for the if $(Rightarrow)$ part. But, I am not sure this is the correct method. What I need to do is manipulate the inequalities in each to get the other. But, I am not sure how to proceed with that.
real-analysis limits analysis
real-analysis limits analysis
edited Dec 19 '18 at 3:39
Martin Argerami
129k1184185
129k1184185
asked Dec 19 '18 at 2:57
Za IraZa Ira
161115
161115
4
$begingroup$
You mean $lim_{x to c} f(x) = L$ if and only if $lim_{x to 0} f(x+c) = L$.
$endgroup$
– Robert Israel
Dec 19 '18 at 3:03
$begingroup$
@RobertIsrael corrected!
$endgroup$
– Za Ira
Dec 19 '18 at 3:07
add a comment |
4
$begingroup$
You mean $lim_{x to c} f(x) = L$ if and only if $lim_{x to 0} f(x+c) = L$.
$endgroup$
– Robert Israel
Dec 19 '18 at 3:03
$begingroup$
@RobertIsrael corrected!
$endgroup$
– Za Ira
Dec 19 '18 at 3:07
4
4
$begingroup$
You mean $lim_{x to c} f(x) = L$ if and only if $lim_{x to 0} f(x+c) = L$.
$endgroup$
– Robert Israel
Dec 19 '18 at 3:03
$begingroup$
You mean $lim_{x to c} f(x) = L$ if and only if $lim_{x to 0} f(x+c) = L$.
$endgroup$
– Robert Israel
Dec 19 '18 at 3:03
$begingroup$
@RobertIsrael corrected!
$endgroup$
– Za Ira
Dec 19 '18 at 3:07
$begingroup$
@RobertIsrael corrected!
$endgroup$
– Za Ira
Dec 19 '18 at 3:07
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Given $varepsilon>0$, use the $delta$ from the definition of $lim_{xto c}f(x)=L$. If $|x|<delta$, then $|(x+c)-c|<delta$, so $|f(x+c)-L|<varepsilon$. Thus $lim_{xto0}f(x+c)=L$.
$endgroup$
$begingroup$
so, my approach was correct?
$endgroup$
– Za Ira
Dec 19 '18 at 3:41
1
$begingroup$
I personally wouldn't be comfortable with "replacing". Your replacement occurs within two quantifiers and inside an implication. I know it works, but if I try to do it your way, it is not easy for me to justify it.
$endgroup$
– Martin Argerami
Dec 19 '18 at 3:43
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045942%2flim-x-rightarrow-cfx-l-if-and-only-if-lim-x-rightarrow0fxc-l%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Given $varepsilon>0$, use the $delta$ from the definition of $lim_{xto c}f(x)=L$. If $|x|<delta$, then $|(x+c)-c|<delta$, so $|f(x+c)-L|<varepsilon$. Thus $lim_{xto0}f(x+c)=L$.
$endgroup$
$begingroup$
so, my approach was correct?
$endgroup$
– Za Ira
Dec 19 '18 at 3:41
1
$begingroup$
I personally wouldn't be comfortable with "replacing". Your replacement occurs within two quantifiers and inside an implication. I know it works, but if I try to do it your way, it is not easy for me to justify it.
$endgroup$
– Martin Argerami
Dec 19 '18 at 3:43
add a comment |
$begingroup$
Given $varepsilon>0$, use the $delta$ from the definition of $lim_{xto c}f(x)=L$. If $|x|<delta$, then $|(x+c)-c|<delta$, so $|f(x+c)-L|<varepsilon$. Thus $lim_{xto0}f(x+c)=L$.
$endgroup$
$begingroup$
so, my approach was correct?
$endgroup$
– Za Ira
Dec 19 '18 at 3:41
1
$begingroup$
I personally wouldn't be comfortable with "replacing". Your replacement occurs within two quantifiers and inside an implication. I know it works, but if I try to do it your way, it is not easy for me to justify it.
$endgroup$
– Martin Argerami
Dec 19 '18 at 3:43
add a comment |
$begingroup$
Given $varepsilon>0$, use the $delta$ from the definition of $lim_{xto c}f(x)=L$. If $|x|<delta$, then $|(x+c)-c|<delta$, so $|f(x+c)-L|<varepsilon$. Thus $lim_{xto0}f(x+c)=L$.
$endgroup$
Given $varepsilon>0$, use the $delta$ from the definition of $lim_{xto c}f(x)=L$. If $|x|<delta$, then $|(x+c)-c|<delta$, so $|f(x+c)-L|<varepsilon$. Thus $lim_{xto0}f(x+c)=L$.
answered Dec 19 '18 at 3:13
Martin ArgeramiMartin Argerami
129k1184185
129k1184185
$begingroup$
so, my approach was correct?
$endgroup$
– Za Ira
Dec 19 '18 at 3:41
1
$begingroup$
I personally wouldn't be comfortable with "replacing". Your replacement occurs within two quantifiers and inside an implication. I know it works, but if I try to do it your way, it is not easy for me to justify it.
$endgroup$
– Martin Argerami
Dec 19 '18 at 3:43
add a comment |
$begingroup$
so, my approach was correct?
$endgroup$
– Za Ira
Dec 19 '18 at 3:41
1
$begingroup$
I personally wouldn't be comfortable with "replacing". Your replacement occurs within two quantifiers and inside an implication. I know it works, but if I try to do it your way, it is not easy for me to justify it.
$endgroup$
– Martin Argerami
Dec 19 '18 at 3:43
$begingroup$
so, my approach was correct?
$endgroup$
– Za Ira
Dec 19 '18 at 3:41
$begingroup$
so, my approach was correct?
$endgroup$
– Za Ira
Dec 19 '18 at 3:41
1
1
$begingroup$
I personally wouldn't be comfortable with "replacing". Your replacement occurs within two quantifiers and inside an implication. I know it works, but if I try to do it your way, it is not easy for me to justify it.
$endgroup$
– Martin Argerami
Dec 19 '18 at 3:43
$begingroup$
I personally wouldn't be comfortable with "replacing". Your replacement occurs within two quantifiers and inside an implication. I know it works, but if I try to do it your way, it is not easy for me to justify it.
$endgroup$
– Martin Argerami
Dec 19 '18 at 3:43
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045942%2flim-x-rightarrow-cfx-l-if-and-only-if-lim-x-rightarrow0fxc-l%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
You mean $lim_{x to c} f(x) = L$ if and only if $lim_{x to 0} f(x+c) = L$.
$endgroup$
– Robert Israel
Dec 19 '18 at 3:03
$begingroup$
@RobertIsrael corrected!
$endgroup$
– Za Ira
Dec 19 '18 at 3:07