Is it possible to prove Cauchy integral formula by parametrizing the circle?
$begingroup$
Theorem. Let $f$ be analytic everywhere inside and on a simple closed contour $C$, taken in the positive sense. If $z_0$ is any point interior to $C$, then $$f(z_0) = frac{1}{2pi i} int_C frac{f(z)dz}{z-z_0}.$$
The proof starts with letting $C_r$ denote a positively oriented circle $|z-z_0|=r$, where $r$ is small enough that $C_r$ is interior to $C$. Since the function $f(z)/(z-z_0)$ is analytic between and on the contours $C$ and $C_r$, we have $$ int_C frac{f(z)dz}{z-z_0} = int_{C_r} frac{f(z)dz}{z-z_0}.$$
Can we then parametrize the contour $C_r$ and calculate $int_{C_r} frac{f(z)dz}{z-z_0}$? How to proceed?
calculus complex-numbers
$endgroup$
add a comment |
$begingroup$
Theorem. Let $f$ be analytic everywhere inside and on a simple closed contour $C$, taken in the positive sense. If $z_0$ is any point interior to $C$, then $$f(z_0) = frac{1}{2pi i} int_C frac{f(z)dz}{z-z_0}.$$
The proof starts with letting $C_r$ denote a positively oriented circle $|z-z_0|=r$, where $r$ is small enough that $C_r$ is interior to $C$. Since the function $f(z)/(z-z_0)$ is analytic between and on the contours $C$ and $C_r$, we have $$ int_C frac{f(z)dz}{z-z_0} = int_{C_r} frac{f(z)dz}{z-z_0}.$$
Can we then parametrize the contour $C_r$ and calculate $int_{C_r} frac{f(z)dz}{z-z_0}$? How to proceed?
calculus complex-numbers
$endgroup$
add a comment |
$begingroup$
Theorem. Let $f$ be analytic everywhere inside and on a simple closed contour $C$, taken in the positive sense. If $z_0$ is any point interior to $C$, then $$f(z_0) = frac{1}{2pi i} int_C frac{f(z)dz}{z-z_0}.$$
The proof starts with letting $C_r$ denote a positively oriented circle $|z-z_0|=r$, where $r$ is small enough that $C_r$ is interior to $C$. Since the function $f(z)/(z-z_0)$ is analytic between and on the contours $C$ and $C_r$, we have $$ int_C frac{f(z)dz}{z-z_0} = int_{C_r} frac{f(z)dz}{z-z_0}.$$
Can we then parametrize the contour $C_r$ and calculate $int_{C_r} frac{f(z)dz}{z-z_0}$? How to proceed?
calculus complex-numbers
$endgroup$
Theorem. Let $f$ be analytic everywhere inside and on a simple closed contour $C$, taken in the positive sense. If $z_0$ is any point interior to $C$, then $$f(z_0) = frac{1}{2pi i} int_C frac{f(z)dz}{z-z_0}.$$
The proof starts with letting $C_r$ denote a positively oriented circle $|z-z_0|=r$, where $r$ is small enough that $C_r$ is interior to $C$. Since the function $f(z)/(z-z_0)$ is analytic between and on the contours $C$ and $C_r$, we have $$ int_C frac{f(z)dz}{z-z_0} = int_{C_r} frac{f(z)dz}{z-z_0}.$$
Can we then parametrize the contour $C_r$ and calculate $int_{C_r} frac{f(z)dz}{z-z_0}$? How to proceed?
calculus complex-numbers
calculus complex-numbers
edited Dec 14 '18 at 22:35
user398843
asked Dec 14 '18 at 22:28
user398843user398843
675216
675216
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
One can proceed using mean value theorem and $rto 0$:
begin{align}
int_{C_r}frac{f(z)}{z-z_0},dz&=int_0^{2pi}frac{f(z_0+re^{itheta})}{re^{itheta}}re^{itheta}i,dtheta=iint_0^{2pi}f(z_0+re^{itheta}),dtheta=\
&=[text{Re},f(z_0+re^{ic_1})+itext{Im},f(z_0+re^{ic_2})]2pi ito f(z_0)2pi i.
end{align}
$endgroup$
add a comment |
$begingroup$
$f(z)=sum a_n (z-z_0)^{n}$ gives $int_0^{2pi} f(z+re^{itheta}) dtheta=sum a_n int_0^{2pi}r^{n} e^{intheta} dtheta=2 pi a_0=2 pi f(z_0)$ (since all but the first term vanish). Now $int_{C_r} frac {f(z)} {z-z_0} dz =i int_0^{2pi} f(z+re^{itheta}) dtheta=2pi i f(z_0)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039956%2fis-it-possible-to-prove-cauchy-integral-formula-by-parametrizing-the-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
One can proceed using mean value theorem and $rto 0$:
begin{align}
int_{C_r}frac{f(z)}{z-z_0},dz&=int_0^{2pi}frac{f(z_0+re^{itheta})}{re^{itheta}}re^{itheta}i,dtheta=iint_0^{2pi}f(z_0+re^{itheta}),dtheta=\
&=[text{Re},f(z_0+re^{ic_1})+itext{Im},f(z_0+re^{ic_2})]2pi ito f(z_0)2pi i.
end{align}
$endgroup$
add a comment |
$begingroup$
One can proceed using mean value theorem and $rto 0$:
begin{align}
int_{C_r}frac{f(z)}{z-z_0},dz&=int_0^{2pi}frac{f(z_0+re^{itheta})}{re^{itheta}}re^{itheta}i,dtheta=iint_0^{2pi}f(z_0+re^{itheta}),dtheta=\
&=[text{Re},f(z_0+re^{ic_1})+itext{Im},f(z_0+re^{ic_2})]2pi ito f(z_0)2pi i.
end{align}
$endgroup$
add a comment |
$begingroup$
One can proceed using mean value theorem and $rto 0$:
begin{align}
int_{C_r}frac{f(z)}{z-z_0},dz&=int_0^{2pi}frac{f(z_0+re^{itheta})}{re^{itheta}}re^{itheta}i,dtheta=iint_0^{2pi}f(z_0+re^{itheta}),dtheta=\
&=[text{Re},f(z_0+re^{ic_1})+itext{Im},f(z_0+re^{ic_2})]2pi ito f(z_0)2pi i.
end{align}
$endgroup$
One can proceed using mean value theorem and $rto 0$:
begin{align}
int_{C_r}frac{f(z)}{z-z_0},dz&=int_0^{2pi}frac{f(z_0+re^{itheta})}{re^{itheta}}re^{itheta}i,dtheta=iint_0^{2pi}f(z_0+re^{itheta}),dtheta=\
&=[text{Re},f(z_0+re^{ic_1})+itext{Im},f(z_0+re^{ic_2})]2pi ito f(z_0)2pi i.
end{align}
edited Dec 14 '18 at 23:33
answered Dec 14 '18 at 23:23
A.Γ.A.Γ.
22.8k32656
22.8k32656
add a comment |
add a comment |
$begingroup$
$f(z)=sum a_n (z-z_0)^{n}$ gives $int_0^{2pi} f(z+re^{itheta}) dtheta=sum a_n int_0^{2pi}r^{n} e^{intheta} dtheta=2 pi a_0=2 pi f(z_0)$ (since all but the first term vanish). Now $int_{C_r} frac {f(z)} {z-z_0} dz =i int_0^{2pi} f(z+re^{itheta}) dtheta=2pi i f(z_0)$.
$endgroup$
add a comment |
$begingroup$
$f(z)=sum a_n (z-z_0)^{n}$ gives $int_0^{2pi} f(z+re^{itheta}) dtheta=sum a_n int_0^{2pi}r^{n} e^{intheta} dtheta=2 pi a_0=2 pi f(z_0)$ (since all but the first term vanish). Now $int_{C_r} frac {f(z)} {z-z_0} dz =i int_0^{2pi} f(z+re^{itheta}) dtheta=2pi i f(z_0)$.
$endgroup$
add a comment |
$begingroup$
$f(z)=sum a_n (z-z_0)^{n}$ gives $int_0^{2pi} f(z+re^{itheta}) dtheta=sum a_n int_0^{2pi}r^{n} e^{intheta} dtheta=2 pi a_0=2 pi f(z_0)$ (since all but the first term vanish). Now $int_{C_r} frac {f(z)} {z-z_0} dz =i int_0^{2pi} f(z+re^{itheta}) dtheta=2pi i f(z_0)$.
$endgroup$
$f(z)=sum a_n (z-z_0)^{n}$ gives $int_0^{2pi} f(z+re^{itheta}) dtheta=sum a_n int_0^{2pi}r^{n} e^{intheta} dtheta=2 pi a_0=2 pi f(z_0)$ (since all but the first term vanish). Now $int_{C_r} frac {f(z)} {z-z_0} dz =i int_0^{2pi} f(z+re^{itheta}) dtheta=2pi i f(z_0)$.
answered Dec 14 '18 at 23:23
Kavi Rama MurthyKavi Rama Murthy
65.1k42766
65.1k42766
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039956%2fis-it-possible-to-prove-cauchy-integral-formula-by-parametrizing-the-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown