Show that $frac{d}{dt} EBig[big |phi_X(tZ)big|^2Big ]=2 E left[ Z phi_X(-t Z) phi_X'(t Z) right] $.
$begingroup$
Let $Z$ be standard normal. Is the following sequence of steps correct?
begin{align}
frac{d}{dt} E Big[ big|phi_X(tZ)big|^2 Big] &= E left[ frac{d}{dt} |phi_X(tZ)|^2 right] \
&=E left[ frac{d}{dt} phi_X(tZ)phi_X^*(tZ) right] text{ using } |phi_X(tZ)|^2= phi_X(tZ)phi_X^*(tZ) \
&=E left[ frac{d}{dt} phi_X(tZ)phi_X(-tZ) right] text{ using } phi_X^*(tZ)=phi_X(-tZ) \
&=E left[ Z phi_X(-t Z) phi_X'(t Z) - Z phi_X(t Z) phi_X'(-t Z) right]\
&=E left[ Z phi_X(-t Z) phi_X'(t Z) right] - E left[ Z phi_X(t Z) phi_X'(-t Z) right]\
&=E left[ Z phi_X(-t Z) phi_X'(t Z) right] - E left[ (-Z) phi_X(-t Z) phi_X'(t Z) right] text{using symmetry of $Z$}\
&=2 E left[ Z phi_X(-t Z) phi_X'(t Z) right]
end{align}
Here, $phi_X(t)$ is the characteristic function of a random variable $X$.
Thank you for your comments.
probability-theory proof-verification normal-distribution characteristic-functions expected-value
$endgroup$
add a comment |
$begingroup$
Let $Z$ be standard normal. Is the following sequence of steps correct?
begin{align}
frac{d}{dt} E Big[ big|phi_X(tZ)big|^2 Big] &= E left[ frac{d}{dt} |phi_X(tZ)|^2 right] \
&=E left[ frac{d}{dt} phi_X(tZ)phi_X^*(tZ) right] text{ using } |phi_X(tZ)|^2= phi_X(tZ)phi_X^*(tZ) \
&=E left[ frac{d}{dt} phi_X(tZ)phi_X(-tZ) right] text{ using } phi_X^*(tZ)=phi_X(-tZ) \
&=E left[ Z phi_X(-t Z) phi_X'(t Z) - Z phi_X(t Z) phi_X'(-t Z) right]\
&=E left[ Z phi_X(-t Z) phi_X'(t Z) right] - E left[ Z phi_X(t Z) phi_X'(-t Z) right]\
&=E left[ Z phi_X(-t Z) phi_X'(t Z) right] - E left[ (-Z) phi_X(-t Z) phi_X'(t Z) right] text{using symmetry of $Z$}\
&=2 E left[ Z phi_X(-t Z) phi_X'(t Z) right]
end{align}
Here, $phi_X(t)$ is the characteristic function of a random variable $X$.
Thank you for your comments.
probability-theory proof-verification normal-distribution characteristic-functions expected-value
$endgroup$
2
$begingroup$
Yes. $ $ $ $ $ $
$endgroup$
– Did
Dec 14 '18 at 20:13
$begingroup$
Except for justification of first step.
$endgroup$
– Kavi Rama Murthy
Dec 15 '18 at 0:04
$begingroup$
@KaviRamaMurthy What would be justification for that?
$endgroup$
– Boby
Dec 15 '18 at 16:34
$begingroup$
$E|phi_X(tZ)|^{2}=Ee^{-t^{2}X^{2}}$. Try to apply DCT.
$endgroup$
– Kavi Rama Murthy
Dec 15 '18 at 23:48
add a comment |
$begingroup$
Let $Z$ be standard normal. Is the following sequence of steps correct?
begin{align}
frac{d}{dt} E Big[ big|phi_X(tZ)big|^2 Big] &= E left[ frac{d}{dt} |phi_X(tZ)|^2 right] \
&=E left[ frac{d}{dt} phi_X(tZ)phi_X^*(tZ) right] text{ using } |phi_X(tZ)|^2= phi_X(tZ)phi_X^*(tZ) \
&=E left[ frac{d}{dt} phi_X(tZ)phi_X(-tZ) right] text{ using } phi_X^*(tZ)=phi_X(-tZ) \
&=E left[ Z phi_X(-t Z) phi_X'(t Z) - Z phi_X(t Z) phi_X'(-t Z) right]\
&=E left[ Z phi_X(-t Z) phi_X'(t Z) right] - E left[ Z phi_X(t Z) phi_X'(-t Z) right]\
&=E left[ Z phi_X(-t Z) phi_X'(t Z) right] - E left[ (-Z) phi_X(-t Z) phi_X'(t Z) right] text{using symmetry of $Z$}\
&=2 E left[ Z phi_X(-t Z) phi_X'(t Z) right]
end{align}
Here, $phi_X(t)$ is the characteristic function of a random variable $X$.
Thank you for your comments.
probability-theory proof-verification normal-distribution characteristic-functions expected-value
$endgroup$
Let $Z$ be standard normal. Is the following sequence of steps correct?
begin{align}
frac{d}{dt} E Big[ big|phi_X(tZ)big|^2 Big] &= E left[ frac{d}{dt} |phi_X(tZ)|^2 right] \
&=E left[ frac{d}{dt} phi_X(tZ)phi_X^*(tZ) right] text{ using } |phi_X(tZ)|^2= phi_X(tZ)phi_X^*(tZ) \
&=E left[ frac{d}{dt} phi_X(tZ)phi_X(-tZ) right] text{ using } phi_X^*(tZ)=phi_X(-tZ) \
&=E left[ Z phi_X(-t Z) phi_X'(t Z) - Z phi_X(t Z) phi_X'(-t Z) right]\
&=E left[ Z phi_X(-t Z) phi_X'(t Z) right] - E left[ Z phi_X(t Z) phi_X'(-t Z) right]\
&=E left[ Z phi_X(-t Z) phi_X'(t Z) right] - E left[ (-Z) phi_X(-t Z) phi_X'(t Z) right] text{using symmetry of $Z$}\
&=2 E left[ Z phi_X(-t Z) phi_X'(t Z) right]
end{align}
Here, $phi_X(t)$ is the characteristic function of a random variable $X$.
Thank you for your comments.
probability-theory proof-verification normal-distribution characteristic-functions expected-value
probability-theory proof-verification normal-distribution characteristic-functions expected-value
edited Dec 14 '18 at 21:33
Batominovski
33.1k33293
33.1k33293
asked Dec 14 '18 at 20:00
BobyBoby
1,0471929
1,0471929
2
$begingroup$
Yes. $ $ $ $ $ $
$endgroup$
– Did
Dec 14 '18 at 20:13
$begingroup$
Except for justification of first step.
$endgroup$
– Kavi Rama Murthy
Dec 15 '18 at 0:04
$begingroup$
@KaviRamaMurthy What would be justification for that?
$endgroup$
– Boby
Dec 15 '18 at 16:34
$begingroup$
$E|phi_X(tZ)|^{2}=Ee^{-t^{2}X^{2}}$. Try to apply DCT.
$endgroup$
– Kavi Rama Murthy
Dec 15 '18 at 23:48
add a comment |
2
$begingroup$
Yes. $ $ $ $ $ $
$endgroup$
– Did
Dec 14 '18 at 20:13
$begingroup$
Except for justification of first step.
$endgroup$
– Kavi Rama Murthy
Dec 15 '18 at 0:04
$begingroup$
@KaviRamaMurthy What would be justification for that?
$endgroup$
– Boby
Dec 15 '18 at 16:34
$begingroup$
$E|phi_X(tZ)|^{2}=Ee^{-t^{2}X^{2}}$. Try to apply DCT.
$endgroup$
– Kavi Rama Murthy
Dec 15 '18 at 23:48
2
2
$begingroup$
Yes. $ $ $ $ $ $
$endgroup$
– Did
Dec 14 '18 at 20:13
$begingroup$
Yes. $ $ $ $ $ $
$endgroup$
– Did
Dec 14 '18 at 20:13
$begingroup$
Except for justification of first step.
$endgroup$
– Kavi Rama Murthy
Dec 15 '18 at 0:04
$begingroup$
Except for justification of first step.
$endgroup$
– Kavi Rama Murthy
Dec 15 '18 at 0:04
$begingroup$
@KaviRamaMurthy What would be justification for that?
$endgroup$
– Boby
Dec 15 '18 at 16:34
$begingroup$
@KaviRamaMurthy What would be justification for that?
$endgroup$
– Boby
Dec 15 '18 at 16:34
$begingroup$
$E|phi_X(tZ)|^{2}=Ee^{-t^{2}X^{2}}$. Try to apply DCT.
$endgroup$
– Kavi Rama Murthy
Dec 15 '18 at 23:48
$begingroup$
$E|phi_X(tZ)|^{2}=Ee^{-t^{2}X^{2}}$. Try to apply DCT.
$endgroup$
– Kavi Rama Murthy
Dec 15 '18 at 23:48
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039828%2fshow-that-fracddt-e-big-big-phi-xtz-big2-big-2-e-left-z-phi-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039828%2fshow-that-fracddt-e-big-big-phi-xtz-big2-big-2-e-left-z-phi-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Yes. $ $ $ $ $ $
$endgroup$
– Did
Dec 14 '18 at 20:13
$begingroup$
Except for justification of first step.
$endgroup$
– Kavi Rama Murthy
Dec 15 '18 at 0:04
$begingroup$
@KaviRamaMurthy What would be justification for that?
$endgroup$
– Boby
Dec 15 '18 at 16:34
$begingroup$
$E|phi_X(tZ)|^{2}=Ee^{-t^{2}X^{2}}$. Try to apply DCT.
$endgroup$
– Kavi Rama Murthy
Dec 15 '18 at 23:48