Calculating entropy change: reversible vs irreversible process












5












$begingroup$


Since the change in internal energy and enthalpy, which are equal to the heats for a constant-volume and constant-pressure process, respectively, are state functions, the heats for a reversible v.s. irreversible process should be equal. Thus, the entropy change of the surroundings which equals the quotient of the heat and temperature are equal for reversible v.s. irreversible processes.



As Engel's Physical Chemistry states it:




Because H and U are state functions, the amount of heat entering the surroundings is independent of the path; q is the same whether the transfer occurs reversibly or irreversibly.




However, when the book proceeds to evaluating the change in entropy for the surroundings for a reversible vs irreersible process, the q used for evaluating the change in entropy of surroundings are not equal for the reversible v.s. irreversible process, which contradicts what the textbook previously stated.



The question:




One mole of an ideal gas at 300. K is reversibly and isothermally compressed from a volume of 25.0 L to a volume of 10.0 L. Because the water bath thermal reservoir in the surroundings is very large, T remains essentially constant at 300. K during the process.




Calculation of change in entropy for reversible path:



enter image description hereenter image description here



Calculation for irreversible path:



enter image description hereenter image description here



It seems that the book used the actual heat for the irreversible process. However, I don't understand why the entropy's from the two calculations are not equal. Also, I fail to understand why the change in entropy for the surroundings are not equal for the two process for which the final and initial states are equal --> change in entropy is a state function and should be the same regardless of path.



References



Engel, Thomas, and Philip Reid. Physical Chemistry. San Francisco: Pearson Benjamin Cummings, 2006.










share|improve this question











$endgroup$












  • $begingroup$
    Update: I am starting to get the feeling that (somehow) the final state of the surroundings after an irreversible process is not the same as the final state of the surroundings after a reversible process. Something (for example, friction between the piston and walls of container) make the final states of surroundings different for irreversible vs reversible --> change in S is not the same. However, since the initial and final T and V are the same for the system in reversible and irreversible, the change in entropy is the same for reversible vs irreversible for system. Is this a valid argument?
    $endgroup$
    – Ethiopius
    Apr 3 at 17:09








  • 1




    $begingroup$
    Entropy change of your system will be the same for both the reversible and irreversible path. However, the entropy of the surroundings will not be the same , as you have seen. The system goes from the same state A to the same state B for both the reversible and irreversible paths, the surroundings are not in the same state after an irreversible process as they would be after a reversible one. @Ethiopius
    $endgroup$
    – Tyberius
    Apr 3 at 17:31








  • 1




    $begingroup$
    @Tyberius What you mean is that the surroundings are not in the same state after an irreversible process imposed on the system as they would be after a reversible process imposed on the system between its same two end states.
    $endgroup$
    – Chet Miller
    Apr 3 at 23:01








  • 1




    $begingroup$
    @ChetMiller That is a clearer description. The way I had phrased I was open to misinterpretation.
    $endgroup$
    – Tyberius
    Apr 3 at 23:03
















5












$begingroup$


Since the change in internal energy and enthalpy, which are equal to the heats for a constant-volume and constant-pressure process, respectively, are state functions, the heats for a reversible v.s. irreversible process should be equal. Thus, the entropy change of the surroundings which equals the quotient of the heat and temperature are equal for reversible v.s. irreversible processes.



As Engel's Physical Chemistry states it:




Because H and U are state functions, the amount of heat entering the surroundings is independent of the path; q is the same whether the transfer occurs reversibly or irreversibly.




However, when the book proceeds to evaluating the change in entropy for the surroundings for a reversible vs irreersible process, the q used for evaluating the change in entropy of surroundings are not equal for the reversible v.s. irreversible process, which contradicts what the textbook previously stated.



The question:




One mole of an ideal gas at 300. K is reversibly and isothermally compressed from a volume of 25.0 L to a volume of 10.0 L. Because the water bath thermal reservoir in the surroundings is very large, T remains essentially constant at 300. K during the process.




Calculation of change in entropy for reversible path:



enter image description hereenter image description here



Calculation for irreversible path:



enter image description hereenter image description here



It seems that the book used the actual heat for the irreversible process. However, I don't understand why the entropy's from the two calculations are not equal. Also, I fail to understand why the change in entropy for the surroundings are not equal for the two process for which the final and initial states are equal --> change in entropy is a state function and should be the same regardless of path.



References



Engel, Thomas, and Philip Reid. Physical Chemistry. San Francisco: Pearson Benjamin Cummings, 2006.










share|improve this question











$endgroup$












  • $begingroup$
    Update: I am starting to get the feeling that (somehow) the final state of the surroundings after an irreversible process is not the same as the final state of the surroundings after a reversible process. Something (for example, friction between the piston and walls of container) make the final states of surroundings different for irreversible vs reversible --> change in S is not the same. However, since the initial and final T and V are the same for the system in reversible and irreversible, the change in entropy is the same for reversible vs irreversible for system. Is this a valid argument?
    $endgroup$
    – Ethiopius
    Apr 3 at 17:09








  • 1




    $begingroup$
    Entropy change of your system will be the same for both the reversible and irreversible path. However, the entropy of the surroundings will not be the same , as you have seen. The system goes from the same state A to the same state B for both the reversible and irreversible paths, the surroundings are not in the same state after an irreversible process as they would be after a reversible one. @Ethiopius
    $endgroup$
    – Tyberius
    Apr 3 at 17:31








  • 1




    $begingroup$
    @Tyberius What you mean is that the surroundings are not in the same state after an irreversible process imposed on the system as they would be after a reversible process imposed on the system between its same two end states.
    $endgroup$
    – Chet Miller
    Apr 3 at 23:01








  • 1




    $begingroup$
    @ChetMiller That is a clearer description. The way I had phrased I was open to misinterpretation.
    $endgroup$
    – Tyberius
    Apr 3 at 23:03














5












5








5





$begingroup$


Since the change in internal energy and enthalpy, which are equal to the heats for a constant-volume and constant-pressure process, respectively, are state functions, the heats for a reversible v.s. irreversible process should be equal. Thus, the entropy change of the surroundings which equals the quotient of the heat and temperature are equal for reversible v.s. irreversible processes.



As Engel's Physical Chemistry states it:




Because H and U are state functions, the amount of heat entering the surroundings is independent of the path; q is the same whether the transfer occurs reversibly or irreversibly.




However, when the book proceeds to evaluating the change in entropy for the surroundings for a reversible vs irreersible process, the q used for evaluating the change in entropy of surroundings are not equal for the reversible v.s. irreversible process, which contradicts what the textbook previously stated.



The question:




One mole of an ideal gas at 300. K is reversibly and isothermally compressed from a volume of 25.0 L to a volume of 10.0 L. Because the water bath thermal reservoir in the surroundings is very large, T remains essentially constant at 300. K during the process.




Calculation of change in entropy for reversible path:



enter image description hereenter image description here



Calculation for irreversible path:



enter image description hereenter image description here



It seems that the book used the actual heat for the irreversible process. However, I don't understand why the entropy's from the two calculations are not equal. Also, I fail to understand why the change in entropy for the surroundings are not equal for the two process for which the final and initial states are equal --> change in entropy is a state function and should be the same regardless of path.



References



Engel, Thomas, and Philip Reid. Physical Chemistry. San Francisco: Pearson Benjamin Cummings, 2006.










share|improve this question











$endgroup$




Since the change in internal energy and enthalpy, which are equal to the heats for a constant-volume and constant-pressure process, respectively, are state functions, the heats for a reversible v.s. irreversible process should be equal. Thus, the entropy change of the surroundings which equals the quotient of the heat and temperature are equal for reversible v.s. irreversible processes.



As Engel's Physical Chemistry states it:




Because H and U are state functions, the amount of heat entering the surroundings is independent of the path; q is the same whether the transfer occurs reversibly or irreversibly.




However, when the book proceeds to evaluating the change in entropy for the surroundings for a reversible vs irreersible process, the q used for evaluating the change in entropy of surroundings are not equal for the reversible v.s. irreversible process, which contradicts what the textbook previously stated.



The question:




One mole of an ideal gas at 300. K is reversibly and isothermally compressed from a volume of 25.0 L to a volume of 10.0 L. Because the water bath thermal reservoir in the surroundings is very large, T remains essentially constant at 300. K during the process.




Calculation of change in entropy for reversible path:



enter image description hereenter image description here



Calculation for irreversible path:



enter image description hereenter image description here



It seems that the book used the actual heat for the irreversible process. However, I don't understand why the entropy's from the two calculations are not equal. Also, I fail to understand why the change in entropy for the surroundings are not equal for the two process for which the final and initial states are equal --> change in entropy is a state function and should be the same regardless of path.



References



Engel, Thomas, and Philip Reid. Physical Chemistry. San Francisco: Pearson Benjamin Cummings, 2006.







physical-chemistry thermodynamics






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Apr 3 at 17:10







Ethiopius

















asked Apr 3 at 16:12









EthiopiusEthiopius

4061114




4061114












  • $begingroup$
    Update: I am starting to get the feeling that (somehow) the final state of the surroundings after an irreversible process is not the same as the final state of the surroundings after a reversible process. Something (for example, friction between the piston and walls of container) make the final states of surroundings different for irreversible vs reversible --> change in S is not the same. However, since the initial and final T and V are the same for the system in reversible and irreversible, the change in entropy is the same for reversible vs irreversible for system. Is this a valid argument?
    $endgroup$
    – Ethiopius
    Apr 3 at 17:09








  • 1




    $begingroup$
    Entropy change of your system will be the same for both the reversible and irreversible path. However, the entropy of the surroundings will not be the same , as you have seen. The system goes from the same state A to the same state B for both the reversible and irreversible paths, the surroundings are not in the same state after an irreversible process as they would be after a reversible one. @Ethiopius
    $endgroup$
    – Tyberius
    Apr 3 at 17:31








  • 1




    $begingroup$
    @Tyberius What you mean is that the surroundings are not in the same state after an irreversible process imposed on the system as they would be after a reversible process imposed on the system between its same two end states.
    $endgroup$
    – Chet Miller
    Apr 3 at 23:01








  • 1




    $begingroup$
    @ChetMiller That is a clearer description. The way I had phrased I was open to misinterpretation.
    $endgroup$
    – Tyberius
    Apr 3 at 23:03


















  • $begingroup$
    Update: I am starting to get the feeling that (somehow) the final state of the surroundings after an irreversible process is not the same as the final state of the surroundings after a reversible process. Something (for example, friction between the piston and walls of container) make the final states of surroundings different for irreversible vs reversible --> change in S is not the same. However, since the initial and final T and V are the same for the system in reversible and irreversible, the change in entropy is the same for reversible vs irreversible for system. Is this a valid argument?
    $endgroup$
    – Ethiopius
    Apr 3 at 17:09








  • 1




    $begingroup$
    Entropy change of your system will be the same for both the reversible and irreversible path. However, the entropy of the surroundings will not be the same , as you have seen. The system goes from the same state A to the same state B for both the reversible and irreversible paths, the surroundings are not in the same state after an irreversible process as they would be after a reversible one. @Ethiopius
    $endgroup$
    – Tyberius
    Apr 3 at 17:31








  • 1




    $begingroup$
    @Tyberius What you mean is that the surroundings are not in the same state after an irreversible process imposed on the system as they would be after a reversible process imposed on the system between its same two end states.
    $endgroup$
    – Chet Miller
    Apr 3 at 23:01








  • 1




    $begingroup$
    @ChetMiller That is a clearer description. The way I had phrased I was open to misinterpretation.
    $endgroup$
    – Tyberius
    Apr 3 at 23:03
















$begingroup$
Update: I am starting to get the feeling that (somehow) the final state of the surroundings after an irreversible process is not the same as the final state of the surroundings after a reversible process. Something (for example, friction between the piston and walls of container) make the final states of surroundings different for irreversible vs reversible --> change in S is not the same. However, since the initial and final T and V are the same for the system in reversible and irreversible, the change in entropy is the same for reversible vs irreversible for system. Is this a valid argument?
$endgroup$
– Ethiopius
Apr 3 at 17:09






$begingroup$
Update: I am starting to get the feeling that (somehow) the final state of the surroundings after an irreversible process is not the same as the final state of the surroundings after a reversible process. Something (for example, friction between the piston and walls of container) make the final states of surroundings different for irreversible vs reversible --> change in S is not the same. However, since the initial and final T and V are the same for the system in reversible and irreversible, the change in entropy is the same for reversible vs irreversible for system. Is this a valid argument?
$endgroup$
– Ethiopius
Apr 3 at 17:09






1




1




$begingroup$
Entropy change of your system will be the same for both the reversible and irreversible path. However, the entropy of the surroundings will not be the same , as you have seen. The system goes from the same state A to the same state B for both the reversible and irreversible paths, the surroundings are not in the same state after an irreversible process as they would be after a reversible one. @Ethiopius
$endgroup$
– Tyberius
Apr 3 at 17:31






$begingroup$
Entropy change of your system will be the same for both the reversible and irreversible path. However, the entropy of the surroundings will not be the same , as you have seen. The system goes from the same state A to the same state B for both the reversible and irreversible paths, the surroundings are not in the same state after an irreversible process as they would be after a reversible one. @Ethiopius
$endgroup$
– Tyberius
Apr 3 at 17:31






1




1




$begingroup$
@Tyberius What you mean is that the surroundings are not in the same state after an irreversible process imposed on the system as they would be after a reversible process imposed on the system between its same two end states.
$endgroup$
– Chet Miller
Apr 3 at 23:01






$begingroup$
@Tyberius What you mean is that the surroundings are not in the same state after an irreversible process imposed on the system as they would be after a reversible process imposed on the system between its same two end states.
$endgroup$
– Chet Miller
Apr 3 at 23:01






1




1




$begingroup$
@ChetMiller That is a clearer description. The way I had phrased I was open to misinterpretation.
$endgroup$
– Tyberius
Apr 3 at 23:03




$begingroup$
@ChetMiller That is a clearer description. The way I had phrased I was open to misinterpretation.
$endgroup$
– Tyberius
Apr 3 at 23:03










1 Answer
1






active

oldest

votes


















5












$begingroup$

You are confused about how to calculate the entropy change for a system and surroundings that have experienced an irreversible process. For the irreversible path, you correctly calculated the final state using the first law of thermodynamics. From this point on, you must totally forget about the irreversible path and, instead, focus exclusively on the initial and final end states. You must separate the system from the surroundings, and then devise an alternative reversible path for each of them separately that takes each from its initial state to its final state. You did that correctly for the system, and determined its correct entropy change (-7.62 J/K). This is the entropy change for the system both for the reversible path you devised as well as for the actual irreversible path.



In the case of the surroundings, during the irreversible process, its internal energy increased by 3.741 kJ at the constant temperature of 300 K. So, for its alternative reversible path, to achieve this same internal energy change at 300 K, the amount of reversible heat it would have to absorb would be the same 3.741 kJ. So, the change in entropy of the surroundings in the irreversible process was 12.47 J/K.



I know that this might all sound a little confusing. So here is a more detailed explanation of the fundamentals as well as a cookbook (foolproof) recipe for determining the change in entropy of the system and surroundings for any arbitrary irreversible process on a closed system (including worked examples of the methodology): https://www.physicsforums.com/insights/grandpa-chets-entropy-recipe/






share|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "431"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f112088%2fcalculating-entropy-change-reversible-vs-irreversible-process%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    You are confused about how to calculate the entropy change for a system and surroundings that have experienced an irreversible process. For the irreversible path, you correctly calculated the final state using the first law of thermodynamics. From this point on, you must totally forget about the irreversible path and, instead, focus exclusively on the initial and final end states. You must separate the system from the surroundings, and then devise an alternative reversible path for each of them separately that takes each from its initial state to its final state. You did that correctly for the system, and determined its correct entropy change (-7.62 J/K). This is the entropy change for the system both for the reversible path you devised as well as for the actual irreversible path.



    In the case of the surroundings, during the irreversible process, its internal energy increased by 3.741 kJ at the constant temperature of 300 K. So, for its alternative reversible path, to achieve this same internal energy change at 300 K, the amount of reversible heat it would have to absorb would be the same 3.741 kJ. So, the change in entropy of the surroundings in the irreversible process was 12.47 J/K.



    I know that this might all sound a little confusing. So here is a more detailed explanation of the fundamentals as well as a cookbook (foolproof) recipe for determining the change in entropy of the system and surroundings for any arbitrary irreversible process on a closed system (including worked examples of the methodology): https://www.physicsforums.com/insights/grandpa-chets-entropy-recipe/






    share|improve this answer









    $endgroup$


















      5












      $begingroup$

      You are confused about how to calculate the entropy change for a system and surroundings that have experienced an irreversible process. For the irreversible path, you correctly calculated the final state using the first law of thermodynamics. From this point on, you must totally forget about the irreversible path and, instead, focus exclusively on the initial and final end states. You must separate the system from the surroundings, and then devise an alternative reversible path for each of them separately that takes each from its initial state to its final state. You did that correctly for the system, and determined its correct entropy change (-7.62 J/K). This is the entropy change for the system both for the reversible path you devised as well as for the actual irreversible path.



      In the case of the surroundings, during the irreversible process, its internal energy increased by 3.741 kJ at the constant temperature of 300 K. So, for its alternative reversible path, to achieve this same internal energy change at 300 K, the amount of reversible heat it would have to absorb would be the same 3.741 kJ. So, the change in entropy of the surroundings in the irreversible process was 12.47 J/K.



      I know that this might all sound a little confusing. So here is a more detailed explanation of the fundamentals as well as a cookbook (foolproof) recipe for determining the change in entropy of the system and surroundings for any arbitrary irreversible process on a closed system (including worked examples of the methodology): https://www.physicsforums.com/insights/grandpa-chets-entropy-recipe/






      share|improve this answer









      $endgroup$
















        5












        5








        5





        $begingroup$

        You are confused about how to calculate the entropy change for a system and surroundings that have experienced an irreversible process. For the irreversible path, you correctly calculated the final state using the first law of thermodynamics. From this point on, you must totally forget about the irreversible path and, instead, focus exclusively on the initial and final end states. You must separate the system from the surroundings, and then devise an alternative reversible path for each of them separately that takes each from its initial state to its final state. You did that correctly for the system, and determined its correct entropy change (-7.62 J/K). This is the entropy change for the system both for the reversible path you devised as well as for the actual irreversible path.



        In the case of the surroundings, during the irreversible process, its internal energy increased by 3.741 kJ at the constant temperature of 300 K. So, for its alternative reversible path, to achieve this same internal energy change at 300 K, the amount of reversible heat it would have to absorb would be the same 3.741 kJ. So, the change in entropy of the surroundings in the irreversible process was 12.47 J/K.



        I know that this might all sound a little confusing. So here is a more detailed explanation of the fundamentals as well as a cookbook (foolproof) recipe for determining the change in entropy of the system and surroundings for any arbitrary irreversible process on a closed system (including worked examples of the methodology): https://www.physicsforums.com/insights/grandpa-chets-entropy-recipe/






        share|improve this answer









        $endgroup$



        You are confused about how to calculate the entropy change for a system and surroundings that have experienced an irreversible process. For the irreversible path, you correctly calculated the final state using the first law of thermodynamics. From this point on, you must totally forget about the irreversible path and, instead, focus exclusively on the initial and final end states. You must separate the system from the surroundings, and then devise an alternative reversible path for each of them separately that takes each from its initial state to its final state. You did that correctly for the system, and determined its correct entropy change (-7.62 J/K). This is the entropy change for the system both for the reversible path you devised as well as for the actual irreversible path.



        In the case of the surroundings, during the irreversible process, its internal energy increased by 3.741 kJ at the constant temperature of 300 K. So, for its alternative reversible path, to achieve this same internal energy change at 300 K, the amount of reversible heat it would have to absorb would be the same 3.741 kJ. So, the change in entropy of the surroundings in the irreversible process was 12.47 J/K.



        I know that this might all sound a little confusing. So here is a more detailed explanation of the fundamentals as well as a cookbook (foolproof) recipe for determining the change in entropy of the system and surroundings for any arbitrary irreversible process on a closed system (including worked examples of the methodology): https://www.physicsforums.com/insights/grandpa-chets-entropy-recipe/







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Apr 3 at 17:13









        Chet MillerChet Miller

        6,5261613




        6,5261613






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Chemistry Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f112088%2fcalculating-entropy-change-reversible-vs-irreversible-process%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa