Evaluating $int_{0}^{2pi}x^2ln^2(1-cos x)dx$
$begingroup$
I learnt that
$$int_{0}^{frac{pi}{2}} x^2 ln^2 cos x dx
= frac{11 pi^5}{1440} + frac{pi^3}{24} ln^2 2 + frac{pi}{2}zeta(3) ln 2$$
from Sangchul Lee's answer on How to evaluate $I=int_0^{pi/2}x^2ln(sin x)ln(cos x) dx$
I did some other calculations, and it appears that
$$I=int_{0}^{2pi}x^2ln^2(1-cos x)~dx = frac{48pizeta(3)ln2+8pi^3ln^22}{3}+frac{52pi^5}{45}.$$
However, I am not sure how to verify the result. What method should I use to calculate $I$?
calculus integration improper-integrals
$endgroup$
add a comment |
$begingroup$
I learnt that
$$int_{0}^{frac{pi}{2}} x^2 ln^2 cos x dx
= frac{11 pi^5}{1440} + frac{pi^3}{24} ln^2 2 + frac{pi}{2}zeta(3) ln 2$$
from Sangchul Lee's answer on How to evaluate $I=int_0^{pi/2}x^2ln(sin x)ln(cos x) dx$
I did some other calculations, and it appears that
$$I=int_{0}^{2pi}x^2ln^2(1-cos x)~dx = frac{48pizeta(3)ln2+8pi^3ln^22}{3}+frac{52pi^5}{45}.$$
However, I am not sure how to verify the result. What method should I use to calculate $I$?
calculus integration improper-integrals
$endgroup$
1
$begingroup$
My bet is on Fourier series ! That ln function has a well known Fourier series !
$endgroup$
– Tolaso
Nov 1 '18 at 22:19
$begingroup$
You can split it into three smaller results that need proving, using $ln (1-cos x)=ln 2+2lnsinfrac{x}{2}$, which at least explains why we get a quadratic in $ln 2$.
$endgroup$
– J.G.
Nov 1 '18 at 22:37
3
$begingroup$
I agree with Tolaso. The Fourier series of $log(1-cos x)$ is straightforward and the Fourier series of $log^2(1-cos x)$ can be computed by convolution and it involves harmonic numbers. Paired with the Fourier series of $x^2$ it converts $I$ into a combination of Euler sums with weight $5$.
$endgroup$
– Jack D'Aurizio
Nov 2 '18 at 2:31
$begingroup$
@Jack: I understand that $ln(1-cos x) = -sum_{n=1}^{infty}frac{cos^n x}{n}$, but how should I compute $ln^2(1-cos x)$ using convolution?
$endgroup$
– Larry
Nov 2 '18 at 13:16
add a comment |
$begingroup$
I learnt that
$$int_{0}^{frac{pi}{2}} x^2 ln^2 cos x dx
= frac{11 pi^5}{1440} + frac{pi^3}{24} ln^2 2 + frac{pi}{2}zeta(3) ln 2$$
from Sangchul Lee's answer on How to evaluate $I=int_0^{pi/2}x^2ln(sin x)ln(cos x) dx$
I did some other calculations, and it appears that
$$I=int_{0}^{2pi}x^2ln^2(1-cos x)~dx = frac{48pizeta(3)ln2+8pi^3ln^22}{3}+frac{52pi^5}{45}.$$
However, I am not sure how to verify the result. What method should I use to calculate $I$?
calculus integration improper-integrals
$endgroup$
I learnt that
$$int_{0}^{frac{pi}{2}} x^2 ln^2 cos x dx
= frac{11 pi^5}{1440} + frac{pi^3}{24} ln^2 2 + frac{pi}{2}zeta(3) ln 2$$
from Sangchul Lee's answer on How to evaluate $I=int_0^{pi/2}x^2ln(sin x)ln(cos x) dx$
I did some other calculations, and it appears that
$$I=int_{0}^{2pi}x^2ln^2(1-cos x)~dx = frac{48pizeta(3)ln2+8pi^3ln^22}{3}+frac{52pi^5}{45}.$$
However, I am not sure how to verify the result. What method should I use to calculate $I$?
calculus integration improper-integrals
calculus integration improper-integrals
edited Dec 19 '18 at 23:21
Larry
asked Nov 1 '18 at 22:15
LarryLarry
2,53031131
2,53031131
1
$begingroup$
My bet is on Fourier series ! That ln function has a well known Fourier series !
$endgroup$
– Tolaso
Nov 1 '18 at 22:19
$begingroup$
You can split it into three smaller results that need proving, using $ln (1-cos x)=ln 2+2lnsinfrac{x}{2}$, which at least explains why we get a quadratic in $ln 2$.
$endgroup$
– J.G.
Nov 1 '18 at 22:37
3
$begingroup$
I agree with Tolaso. The Fourier series of $log(1-cos x)$ is straightforward and the Fourier series of $log^2(1-cos x)$ can be computed by convolution and it involves harmonic numbers. Paired with the Fourier series of $x^2$ it converts $I$ into a combination of Euler sums with weight $5$.
$endgroup$
– Jack D'Aurizio
Nov 2 '18 at 2:31
$begingroup$
@Jack: I understand that $ln(1-cos x) = -sum_{n=1}^{infty}frac{cos^n x}{n}$, but how should I compute $ln^2(1-cos x)$ using convolution?
$endgroup$
– Larry
Nov 2 '18 at 13:16
add a comment |
1
$begingroup$
My bet is on Fourier series ! That ln function has a well known Fourier series !
$endgroup$
– Tolaso
Nov 1 '18 at 22:19
$begingroup$
You can split it into three smaller results that need proving, using $ln (1-cos x)=ln 2+2lnsinfrac{x}{2}$, which at least explains why we get a quadratic in $ln 2$.
$endgroup$
– J.G.
Nov 1 '18 at 22:37
3
$begingroup$
I agree with Tolaso. The Fourier series of $log(1-cos x)$ is straightforward and the Fourier series of $log^2(1-cos x)$ can be computed by convolution and it involves harmonic numbers. Paired with the Fourier series of $x^2$ it converts $I$ into a combination of Euler sums with weight $5$.
$endgroup$
– Jack D'Aurizio
Nov 2 '18 at 2:31
$begingroup$
@Jack: I understand that $ln(1-cos x) = -sum_{n=1}^{infty}frac{cos^n x}{n}$, but how should I compute $ln^2(1-cos x)$ using convolution?
$endgroup$
– Larry
Nov 2 '18 at 13:16
1
1
$begingroup$
My bet is on Fourier series ! That ln function has a well known Fourier series !
$endgroup$
– Tolaso
Nov 1 '18 at 22:19
$begingroup$
My bet is on Fourier series ! That ln function has a well known Fourier series !
$endgroup$
– Tolaso
Nov 1 '18 at 22:19
$begingroup$
You can split it into three smaller results that need proving, using $ln (1-cos x)=ln 2+2lnsinfrac{x}{2}$, which at least explains why we get a quadratic in $ln 2$.
$endgroup$
– J.G.
Nov 1 '18 at 22:37
$begingroup$
You can split it into three smaller results that need proving, using $ln (1-cos x)=ln 2+2lnsinfrac{x}{2}$, which at least explains why we get a quadratic in $ln 2$.
$endgroup$
– J.G.
Nov 1 '18 at 22:37
3
3
$begingroup$
I agree with Tolaso. The Fourier series of $log(1-cos x)$ is straightforward and the Fourier series of $log^2(1-cos x)$ can be computed by convolution and it involves harmonic numbers. Paired with the Fourier series of $x^2$ it converts $I$ into a combination of Euler sums with weight $5$.
$endgroup$
– Jack D'Aurizio
Nov 2 '18 at 2:31
$begingroup$
I agree with Tolaso. The Fourier series of $log(1-cos x)$ is straightforward and the Fourier series of $log^2(1-cos x)$ can be computed by convolution and it involves harmonic numbers. Paired with the Fourier series of $x^2$ it converts $I$ into a combination of Euler sums with weight $5$.
$endgroup$
– Jack D'Aurizio
Nov 2 '18 at 2:31
$begingroup$
@Jack: I understand that $ln(1-cos x) = -sum_{n=1}^{infty}frac{cos^n x}{n}$, but how should I compute $ln^2(1-cos x)$ using convolution?
$endgroup$
– Larry
Nov 2 '18 at 13:16
$begingroup$
@Jack: I understand that $ln(1-cos x) = -sum_{n=1}^{infty}frac{cos^n x}{n}$, but how should I compute $ln^2(1-cos x)$ using convolution?
$endgroup$
– Larry
Nov 2 '18 at 13:16
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
After spending a lot of time I've reached the answer (not without help of "MathStackExchangians"). I'll continue the derivation by Larry starting from $I_2$.
I will use the following integral:
$$int_0^pi x^2cos(2kx)~dx=fracpi{2k^2}$$
We have
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32underbrace{int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx}_{J}
end{align}$$
$$smallbegin{align}
J &= int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos^2 (2nx)}{n^2}+sum_{m,n=1;mneq n}^{infty}frac{cos (2mx)cos (2nx)}{mn}right)~dx\
&=sum_{n=1}^{infty}frac1{n^2}int_{0}^{pi}x^2cos^2 (2nx)~dx+sum_{m,n=1;mneq n}^{infty}frac1{mn}int_{0}^{pi}x^2cos (2mx)cos (2nx)~dx\
&=sum_{n=1}^{infty}frac1{2n^2}int_{0}^{pi}x^2(1+cos (4nx))~dx+sum_{m,n=1;mneq n}^{infty}frac1{2mn}int_{0}^{pi}x^2(cos (2(m+n)x)+cos (2(m-n)x))~dx\
&=sum_{n=1}^{infty}frac1{2n^2}left(int_{0}^{pi}x^2~dx+int_{0}^{pi}x^2cos (4nx)~dxright)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(int_{0}^{pi}x^2cos (2(m+n)x)~dx+int_{0}^{pi}x^2cos (2(m-n)x)~dxright)\
&=sum_{n=1}^{infty}frac1{2n^2}left(frac{pi^3}3+fracpi{2(2n)^2}right)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(fracpi{2(m+n)^2}+fracpi{2(m-n)^2}right)\
&=frac{pi^3}6sum_{n=1}^{infty}frac1{n^2}+fracpi{16}sum_{n=1}^{infty}frac1{n^4}+fracpi2sum_{m,n=1;mneq n}^{infty}frac{m^2+n^2}{mn(m^2-n^2)^2}\
&=frac{pi^3}6frac{pi^2}6+frac{pi}{16}frac{pi^4}{90}+fracpi2frac{11pi^4}{720}=frac{13pi^5}{360}
end{align}
$$
The last sum is evaluated (my thanks to Robert Z and Zvi) in this question
Finally we have
$$smallbegin{align}
I_2 &= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32frac{13pi^5}{360}\
&= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}fracpi{2n^2}+frac{52pi^5}{45}\
&=frac{32}{3}pi^3ln^2(2)+32ln(2)pisum_{n=1}^{infty}frac1{n^3}+frac{52pi^5}{45}\
&= pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}
end{align}$$
And thus
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}\
&= 16pizeta(3)ln(2)+frac{8pi^3ln^2(2)}{3}+frac{52pi^5}{45}
end{align}$$
$endgroup$
$begingroup$
Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
$endgroup$
– mrtaurho
Nov 7 '18 at 17:46
$begingroup$
@Mikalai: Nice solution, thank you for your answer.
$endgroup$
– Larry
Nov 7 '18 at 20:48
$begingroup$
@mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
$endgroup$
– Larry
Nov 7 '18 at 20:54
1
$begingroup$
@Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
$endgroup$
– mrtaurho
Nov 7 '18 at 20:57
add a comment |
$begingroup$
Attempt:
By using the trigonometric identity
$$1-cos(x)=2sin^2left(frac x2right)$$
The given integral becomes
$$smallbegin{align}
I = int_{0}^{2pi}x^2ln^2 (1-cos x)~dx &= int_{0}^{2pi}x^2 ln^2left(2sin^2left(frac x2right)right)~dx\
&=int_{0}^{2pi}x^2left(ln(2)+2lnleft(sin frac{x}{2}right)right)^2dx\
&=int_{0}^{2pi}x^2 left(ln^2(2)+4ln(2)lnleft(sin frac{x}{2}right)+4ln^2left(sin frac{x}{2}right)right)dx\
&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx+4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx
end{align}$$
where within the second integral the substitution $x=frac x2$ was used. Now use the Fourier series expansion
$$ln(sin x)=-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}$$
to further get
$$smallbegin{align}
I_1 = frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2left[-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right]~dx\
&=frac{8pi^3}{3}ln^2(2)-32ln^2(2)int_0^{pi}x^2~dx-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx
end{align}$$
Using integration by part, we get
$$smallbegin{align}
I_1 &= -8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nleft[-x^2frac{sin(2nx)}{2n}+frac{2xcos(2nx)}{4n^2}-frac{2sin(2nx)}{8n^3}right]_{0}^{pi}\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}{n}frac{2pi}{4n^2}\
&= -8pi^3ln^2(2)-16piln(2)sum_{n=1}^{infty}frac{1}{n^3}\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)
end{align}$$
Let
$$I_2 = 4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx$$
Again, use $x = frac{x}{2}$
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+32int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos(2nx)}{n}sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}int_{0}^{pi}x^2cos(2nx)sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}sum_{n=1}^{infty}frac{1}{n}int_{0}^{pi}x^2cos^2(2nx)~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left[frac{x^2sin(4nx)}{8n}-frac{sin(4nx)}{64n^3}+frac{xcos(4nx)}{16n^2}+frac{x^3}{6}right]_{0}^{pi}tag{a}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left(frac{pi}{16n^2}+frac{pi^3}{6}right)\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{2pi}{n^4}+frac{16pi^3}{3n^2}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{pi^5}{45}+frac{8pi^5}{9}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}
end{align}$$
Note that
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}\
&= frac{48pizeta(3)ln(2)+8pi^3ln^2(2)}{3}+frac{41pi^5}{45}
end{align}$$
However, the last term should be $frac{52pi^5}{45}$. I think I did something wrong on step (a).
$endgroup$
1
$begingroup$
You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
$endgroup$
– Mikalai Parshutsich
Nov 5 '18 at 14:07
$begingroup$
That's what I thought, but I am not sure how to correct my mistake.
$endgroup$
– Larry
Nov 5 '18 at 18:17
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2981049%2fevaluating-int-02-pix2-ln21-cos-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
After spending a lot of time I've reached the answer (not without help of "MathStackExchangians"). I'll continue the derivation by Larry starting from $I_2$.
I will use the following integral:
$$int_0^pi x^2cos(2kx)~dx=fracpi{2k^2}$$
We have
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32underbrace{int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx}_{J}
end{align}$$
$$smallbegin{align}
J &= int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos^2 (2nx)}{n^2}+sum_{m,n=1;mneq n}^{infty}frac{cos (2mx)cos (2nx)}{mn}right)~dx\
&=sum_{n=1}^{infty}frac1{n^2}int_{0}^{pi}x^2cos^2 (2nx)~dx+sum_{m,n=1;mneq n}^{infty}frac1{mn}int_{0}^{pi}x^2cos (2mx)cos (2nx)~dx\
&=sum_{n=1}^{infty}frac1{2n^2}int_{0}^{pi}x^2(1+cos (4nx))~dx+sum_{m,n=1;mneq n}^{infty}frac1{2mn}int_{0}^{pi}x^2(cos (2(m+n)x)+cos (2(m-n)x))~dx\
&=sum_{n=1}^{infty}frac1{2n^2}left(int_{0}^{pi}x^2~dx+int_{0}^{pi}x^2cos (4nx)~dxright)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(int_{0}^{pi}x^2cos (2(m+n)x)~dx+int_{0}^{pi}x^2cos (2(m-n)x)~dxright)\
&=sum_{n=1}^{infty}frac1{2n^2}left(frac{pi^3}3+fracpi{2(2n)^2}right)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(fracpi{2(m+n)^2}+fracpi{2(m-n)^2}right)\
&=frac{pi^3}6sum_{n=1}^{infty}frac1{n^2}+fracpi{16}sum_{n=1}^{infty}frac1{n^4}+fracpi2sum_{m,n=1;mneq n}^{infty}frac{m^2+n^2}{mn(m^2-n^2)^2}\
&=frac{pi^3}6frac{pi^2}6+frac{pi}{16}frac{pi^4}{90}+fracpi2frac{11pi^4}{720}=frac{13pi^5}{360}
end{align}
$$
The last sum is evaluated (my thanks to Robert Z and Zvi) in this question
Finally we have
$$smallbegin{align}
I_2 &= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32frac{13pi^5}{360}\
&= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}fracpi{2n^2}+frac{52pi^5}{45}\
&=frac{32}{3}pi^3ln^2(2)+32ln(2)pisum_{n=1}^{infty}frac1{n^3}+frac{52pi^5}{45}\
&= pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}
end{align}$$
And thus
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}\
&= 16pizeta(3)ln(2)+frac{8pi^3ln^2(2)}{3}+frac{52pi^5}{45}
end{align}$$
$endgroup$
$begingroup$
Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
$endgroup$
– mrtaurho
Nov 7 '18 at 17:46
$begingroup$
@Mikalai: Nice solution, thank you for your answer.
$endgroup$
– Larry
Nov 7 '18 at 20:48
$begingroup$
@mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
$endgroup$
– Larry
Nov 7 '18 at 20:54
1
$begingroup$
@Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
$endgroup$
– mrtaurho
Nov 7 '18 at 20:57
add a comment |
$begingroup$
After spending a lot of time I've reached the answer (not without help of "MathStackExchangians"). I'll continue the derivation by Larry starting from $I_2$.
I will use the following integral:
$$int_0^pi x^2cos(2kx)~dx=fracpi{2k^2}$$
We have
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32underbrace{int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx}_{J}
end{align}$$
$$smallbegin{align}
J &= int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos^2 (2nx)}{n^2}+sum_{m,n=1;mneq n}^{infty}frac{cos (2mx)cos (2nx)}{mn}right)~dx\
&=sum_{n=1}^{infty}frac1{n^2}int_{0}^{pi}x^2cos^2 (2nx)~dx+sum_{m,n=1;mneq n}^{infty}frac1{mn}int_{0}^{pi}x^2cos (2mx)cos (2nx)~dx\
&=sum_{n=1}^{infty}frac1{2n^2}int_{0}^{pi}x^2(1+cos (4nx))~dx+sum_{m,n=1;mneq n}^{infty}frac1{2mn}int_{0}^{pi}x^2(cos (2(m+n)x)+cos (2(m-n)x))~dx\
&=sum_{n=1}^{infty}frac1{2n^2}left(int_{0}^{pi}x^2~dx+int_{0}^{pi}x^2cos (4nx)~dxright)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(int_{0}^{pi}x^2cos (2(m+n)x)~dx+int_{0}^{pi}x^2cos (2(m-n)x)~dxright)\
&=sum_{n=1}^{infty}frac1{2n^2}left(frac{pi^3}3+fracpi{2(2n)^2}right)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(fracpi{2(m+n)^2}+fracpi{2(m-n)^2}right)\
&=frac{pi^3}6sum_{n=1}^{infty}frac1{n^2}+fracpi{16}sum_{n=1}^{infty}frac1{n^4}+fracpi2sum_{m,n=1;mneq n}^{infty}frac{m^2+n^2}{mn(m^2-n^2)^2}\
&=frac{pi^3}6frac{pi^2}6+frac{pi}{16}frac{pi^4}{90}+fracpi2frac{11pi^4}{720}=frac{13pi^5}{360}
end{align}
$$
The last sum is evaluated (my thanks to Robert Z and Zvi) in this question
Finally we have
$$smallbegin{align}
I_2 &= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32frac{13pi^5}{360}\
&= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}fracpi{2n^2}+frac{52pi^5}{45}\
&=frac{32}{3}pi^3ln^2(2)+32ln(2)pisum_{n=1}^{infty}frac1{n^3}+frac{52pi^5}{45}\
&= pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}
end{align}$$
And thus
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}\
&= 16pizeta(3)ln(2)+frac{8pi^3ln^2(2)}{3}+frac{52pi^5}{45}
end{align}$$
$endgroup$
$begingroup$
Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
$endgroup$
– mrtaurho
Nov 7 '18 at 17:46
$begingroup$
@Mikalai: Nice solution, thank you for your answer.
$endgroup$
– Larry
Nov 7 '18 at 20:48
$begingroup$
@mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
$endgroup$
– Larry
Nov 7 '18 at 20:54
1
$begingroup$
@Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
$endgroup$
– mrtaurho
Nov 7 '18 at 20:57
add a comment |
$begingroup$
After spending a lot of time I've reached the answer (not without help of "MathStackExchangians"). I'll continue the derivation by Larry starting from $I_2$.
I will use the following integral:
$$int_0^pi x^2cos(2kx)~dx=fracpi{2k^2}$$
We have
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32underbrace{int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx}_{J}
end{align}$$
$$smallbegin{align}
J &= int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos^2 (2nx)}{n^2}+sum_{m,n=1;mneq n}^{infty}frac{cos (2mx)cos (2nx)}{mn}right)~dx\
&=sum_{n=1}^{infty}frac1{n^2}int_{0}^{pi}x^2cos^2 (2nx)~dx+sum_{m,n=1;mneq n}^{infty}frac1{mn}int_{0}^{pi}x^2cos (2mx)cos (2nx)~dx\
&=sum_{n=1}^{infty}frac1{2n^2}int_{0}^{pi}x^2(1+cos (4nx))~dx+sum_{m,n=1;mneq n}^{infty}frac1{2mn}int_{0}^{pi}x^2(cos (2(m+n)x)+cos (2(m-n)x))~dx\
&=sum_{n=1}^{infty}frac1{2n^2}left(int_{0}^{pi}x^2~dx+int_{0}^{pi}x^2cos (4nx)~dxright)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(int_{0}^{pi}x^2cos (2(m+n)x)~dx+int_{0}^{pi}x^2cos (2(m-n)x)~dxright)\
&=sum_{n=1}^{infty}frac1{2n^2}left(frac{pi^3}3+fracpi{2(2n)^2}right)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(fracpi{2(m+n)^2}+fracpi{2(m-n)^2}right)\
&=frac{pi^3}6sum_{n=1}^{infty}frac1{n^2}+fracpi{16}sum_{n=1}^{infty}frac1{n^4}+fracpi2sum_{m,n=1;mneq n}^{infty}frac{m^2+n^2}{mn(m^2-n^2)^2}\
&=frac{pi^3}6frac{pi^2}6+frac{pi}{16}frac{pi^4}{90}+fracpi2frac{11pi^4}{720}=frac{13pi^5}{360}
end{align}
$$
The last sum is evaluated (my thanks to Robert Z and Zvi) in this question
Finally we have
$$smallbegin{align}
I_2 &= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32frac{13pi^5}{360}\
&= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}fracpi{2n^2}+frac{52pi^5}{45}\
&=frac{32}{3}pi^3ln^2(2)+32ln(2)pisum_{n=1}^{infty}frac1{n^3}+frac{52pi^5}{45}\
&= pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}
end{align}$$
And thus
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}\
&= 16pizeta(3)ln(2)+frac{8pi^3ln^2(2)}{3}+frac{52pi^5}{45}
end{align}$$
$endgroup$
After spending a lot of time I've reached the answer (not without help of "MathStackExchangians"). I'll continue the derivation by Larry starting from $I_2$.
I will use the following integral:
$$int_0^pi x^2cos(2kx)~dx=fracpi{2k^2}$$
We have
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32underbrace{int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx}_{J}
end{align}$$
$$smallbegin{align}
J &= int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos^2 (2nx)}{n^2}+sum_{m,n=1;mneq n}^{infty}frac{cos (2mx)cos (2nx)}{mn}right)~dx\
&=sum_{n=1}^{infty}frac1{n^2}int_{0}^{pi}x^2cos^2 (2nx)~dx+sum_{m,n=1;mneq n}^{infty}frac1{mn}int_{0}^{pi}x^2cos (2mx)cos (2nx)~dx\
&=sum_{n=1}^{infty}frac1{2n^2}int_{0}^{pi}x^2(1+cos (4nx))~dx+sum_{m,n=1;mneq n}^{infty}frac1{2mn}int_{0}^{pi}x^2(cos (2(m+n)x)+cos (2(m-n)x))~dx\
&=sum_{n=1}^{infty}frac1{2n^2}left(int_{0}^{pi}x^2~dx+int_{0}^{pi}x^2cos (4nx)~dxright)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(int_{0}^{pi}x^2cos (2(m+n)x)~dx+int_{0}^{pi}x^2cos (2(m-n)x)~dxright)\
&=sum_{n=1}^{infty}frac1{2n^2}left(frac{pi^3}3+fracpi{2(2n)^2}right)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(fracpi{2(m+n)^2}+fracpi{2(m-n)^2}right)\
&=frac{pi^3}6sum_{n=1}^{infty}frac1{n^2}+fracpi{16}sum_{n=1}^{infty}frac1{n^4}+fracpi2sum_{m,n=1;mneq n}^{infty}frac{m^2+n^2}{mn(m^2-n^2)^2}\
&=frac{pi^3}6frac{pi^2}6+frac{pi}{16}frac{pi^4}{90}+fracpi2frac{11pi^4}{720}=frac{13pi^5}{360}
end{align}
$$
The last sum is evaluated (my thanks to Robert Z and Zvi) in this question
Finally we have
$$smallbegin{align}
I_2 &= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32frac{13pi^5}{360}\
&= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}fracpi{2n^2}+frac{52pi^5}{45}\
&=frac{32}{3}pi^3ln^2(2)+32ln(2)pisum_{n=1}^{infty}frac1{n^3}+frac{52pi^5}{45}\
&= pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}
end{align}$$
And thus
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}\
&= 16pizeta(3)ln(2)+frac{8pi^3ln^2(2)}{3}+frac{52pi^5}{45}
end{align}$$
answered Nov 6 '18 at 13:06
Mikalai ParshutsichMikalai Parshutsich
473315
473315
$begingroup$
Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
$endgroup$
– mrtaurho
Nov 7 '18 at 17:46
$begingroup$
@Mikalai: Nice solution, thank you for your answer.
$endgroup$
– Larry
Nov 7 '18 at 20:48
$begingroup$
@mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
$endgroup$
– Larry
Nov 7 '18 at 20:54
1
$begingroup$
@Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
$endgroup$
– mrtaurho
Nov 7 '18 at 20:57
add a comment |
$begingroup$
Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
$endgroup$
– mrtaurho
Nov 7 '18 at 17:46
$begingroup$
@Mikalai: Nice solution, thank you for your answer.
$endgroup$
– Larry
Nov 7 '18 at 20:48
$begingroup$
@mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
$endgroup$
– Larry
Nov 7 '18 at 20:54
1
$begingroup$
@Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
$endgroup$
– mrtaurho
Nov 7 '18 at 20:57
$begingroup$
Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
$endgroup$
– mrtaurho
Nov 7 '18 at 17:46
$begingroup$
Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
$endgroup$
– mrtaurho
Nov 7 '18 at 17:46
$begingroup$
@Mikalai: Nice solution, thank you for your answer.
$endgroup$
– Larry
Nov 7 '18 at 20:48
$begingroup$
@Mikalai: Nice solution, thank you for your answer.
$endgroup$
– Larry
Nov 7 '18 at 20:48
$begingroup$
@mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
$endgroup$
– Larry
Nov 7 '18 at 20:54
$begingroup$
@mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
$endgroup$
– Larry
Nov 7 '18 at 20:54
1
1
$begingroup$
@Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
$endgroup$
– mrtaurho
Nov 7 '18 at 20:57
$begingroup$
@Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
$endgroup$
– mrtaurho
Nov 7 '18 at 20:57
add a comment |
$begingroup$
Attempt:
By using the trigonometric identity
$$1-cos(x)=2sin^2left(frac x2right)$$
The given integral becomes
$$smallbegin{align}
I = int_{0}^{2pi}x^2ln^2 (1-cos x)~dx &= int_{0}^{2pi}x^2 ln^2left(2sin^2left(frac x2right)right)~dx\
&=int_{0}^{2pi}x^2left(ln(2)+2lnleft(sin frac{x}{2}right)right)^2dx\
&=int_{0}^{2pi}x^2 left(ln^2(2)+4ln(2)lnleft(sin frac{x}{2}right)+4ln^2left(sin frac{x}{2}right)right)dx\
&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx+4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx
end{align}$$
where within the second integral the substitution $x=frac x2$ was used. Now use the Fourier series expansion
$$ln(sin x)=-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}$$
to further get
$$smallbegin{align}
I_1 = frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2left[-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right]~dx\
&=frac{8pi^3}{3}ln^2(2)-32ln^2(2)int_0^{pi}x^2~dx-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx
end{align}$$
Using integration by part, we get
$$smallbegin{align}
I_1 &= -8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nleft[-x^2frac{sin(2nx)}{2n}+frac{2xcos(2nx)}{4n^2}-frac{2sin(2nx)}{8n^3}right]_{0}^{pi}\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}{n}frac{2pi}{4n^2}\
&= -8pi^3ln^2(2)-16piln(2)sum_{n=1}^{infty}frac{1}{n^3}\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)
end{align}$$
Let
$$I_2 = 4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx$$
Again, use $x = frac{x}{2}$
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+32int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos(2nx)}{n}sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}int_{0}^{pi}x^2cos(2nx)sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}sum_{n=1}^{infty}frac{1}{n}int_{0}^{pi}x^2cos^2(2nx)~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left[frac{x^2sin(4nx)}{8n}-frac{sin(4nx)}{64n^3}+frac{xcos(4nx)}{16n^2}+frac{x^3}{6}right]_{0}^{pi}tag{a}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left(frac{pi}{16n^2}+frac{pi^3}{6}right)\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{2pi}{n^4}+frac{16pi^3}{3n^2}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{pi^5}{45}+frac{8pi^5}{9}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}
end{align}$$
Note that
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}\
&= frac{48pizeta(3)ln(2)+8pi^3ln^2(2)}{3}+frac{41pi^5}{45}
end{align}$$
However, the last term should be $frac{52pi^5}{45}$. I think I did something wrong on step (a).
$endgroup$
1
$begingroup$
You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
$endgroup$
– Mikalai Parshutsich
Nov 5 '18 at 14:07
$begingroup$
That's what I thought, but I am not sure how to correct my mistake.
$endgroup$
– Larry
Nov 5 '18 at 18:17
add a comment |
$begingroup$
Attempt:
By using the trigonometric identity
$$1-cos(x)=2sin^2left(frac x2right)$$
The given integral becomes
$$smallbegin{align}
I = int_{0}^{2pi}x^2ln^2 (1-cos x)~dx &= int_{0}^{2pi}x^2 ln^2left(2sin^2left(frac x2right)right)~dx\
&=int_{0}^{2pi}x^2left(ln(2)+2lnleft(sin frac{x}{2}right)right)^2dx\
&=int_{0}^{2pi}x^2 left(ln^2(2)+4ln(2)lnleft(sin frac{x}{2}right)+4ln^2left(sin frac{x}{2}right)right)dx\
&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx+4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx
end{align}$$
where within the second integral the substitution $x=frac x2$ was used. Now use the Fourier series expansion
$$ln(sin x)=-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}$$
to further get
$$smallbegin{align}
I_1 = frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2left[-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right]~dx\
&=frac{8pi^3}{3}ln^2(2)-32ln^2(2)int_0^{pi}x^2~dx-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx
end{align}$$
Using integration by part, we get
$$smallbegin{align}
I_1 &= -8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nleft[-x^2frac{sin(2nx)}{2n}+frac{2xcos(2nx)}{4n^2}-frac{2sin(2nx)}{8n^3}right]_{0}^{pi}\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}{n}frac{2pi}{4n^2}\
&= -8pi^3ln^2(2)-16piln(2)sum_{n=1}^{infty}frac{1}{n^3}\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)
end{align}$$
Let
$$I_2 = 4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx$$
Again, use $x = frac{x}{2}$
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+32int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos(2nx)}{n}sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}int_{0}^{pi}x^2cos(2nx)sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}sum_{n=1}^{infty}frac{1}{n}int_{0}^{pi}x^2cos^2(2nx)~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left[frac{x^2sin(4nx)}{8n}-frac{sin(4nx)}{64n^3}+frac{xcos(4nx)}{16n^2}+frac{x^3}{6}right]_{0}^{pi}tag{a}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left(frac{pi}{16n^2}+frac{pi^3}{6}right)\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{2pi}{n^4}+frac{16pi^3}{3n^2}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{pi^5}{45}+frac{8pi^5}{9}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}
end{align}$$
Note that
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}\
&= frac{48pizeta(3)ln(2)+8pi^3ln^2(2)}{3}+frac{41pi^5}{45}
end{align}$$
However, the last term should be $frac{52pi^5}{45}$. I think I did something wrong on step (a).
$endgroup$
1
$begingroup$
You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
$endgroup$
– Mikalai Parshutsich
Nov 5 '18 at 14:07
$begingroup$
That's what I thought, but I am not sure how to correct my mistake.
$endgroup$
– Larry
Nov 5 '18 at 18:17
add a comment |
$begingroup$
Attempt:
By using the trigonometric identity
$$1-cos(x)=2sin^2left(frac x2right)$$
The given integral becomes
$$smallbegin{align}
I = int_{0}^{2pi}x^2ln^2 (1-cos x)~dx &= int_{0}^{2pi}x^2 ln^2left(2sin^2left(frac x2right)right)~dx\
&=int_{0}^{2pi}x^2left(ln(2)+2lnleft(sin frac{x}{2}right)right)^2dx\
&=int_{0}^{2pi}x^2 left(ln^2(2)+4ln(2)lnleft(sin frac{x}{2}right)+4ln^2left(sin frac{x}{2}right)right)dx\
&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx+4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx
end{align}$$
where within the second integral the substitution $x=frac x2$ was used. Now use the Fourier series expansion
$$ln(sin x)=-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}$$
to further get
$$smallbegin{align}
I_1 = frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2left[-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right]~dx\
&=frac{8pi^3}{3}ln^2(2)-32ln^2(2)int_0^{pi}x^2~dx-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx
end{align}$$
Using integration by part, we get
$$smallbegin{align}
I_1 &= -8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nleft[-x^2frac{sin(2nx)}{2n}+frac{2xcos(2nx)}{4n^2}-frac{2sin(2nx)}{8n^3}right]_{0}^{pi}\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}{n}frac{2pi}{4n^2}\
&= -8pi^3ln^2(2)-16piln(2)sum_{n=1}^{infty}frac{1}{n^3}\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)
end{align}$$
Let
$$I_2 = 4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx$$
Again, use $x = frac{x}{2}$
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+32int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos(2nx)}{n}sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}int_{0}^{pi}x^2cos(2nx)sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}sum_{n=1}^{infty}frac{1}{n}int_{0}^{pi}x^2cos^2(2nx)~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left[frac{x^2sin(4nx)}{8n}-frac{sin(4nx)}{64n^3}+frac{xcos(4nx)}{16n^2}+frac{x^3}{6}right]_{0}^{pi}tag{a}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left(frac{pi}{16n^2}+frac{pi^3}{6}right)\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{2pi}{n^4}+frac{16pi^3}{3n^2}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{pi^5}{45}+frac{8pi^5}{9}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}
end{align}$$
Note that
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}\
&= frac{48pizeta(3)ln(2)+8pi^3ln^2(2)}{3}+frac{41pi^5}{45}
end{align}$$
However, the last term should be $frac{52pi^5}{45}$. I think I did something wrong on step (a).
$endgroup$
Attempt:
By using the trigonometric identity
$$1-cos(x)=2sin^2left(frac x2right)$$
The given integral becomes
$$smallbegin{align}
I = int_{0}^{2pi}x^2ln^2 (1-cos x)~dx &= int_{0}^{2pi}x^2 ln^2left(2sin^2left(frac x2right)right)~dx\
&=int_{0}^{2pi}x^2left(ln(2)+2lnleft(sin frac{x}{2}right)right)^2dx\
&=int_{0}^{2pi}x^2 left(ln^2(2)+4ln(2)lnleft(sin frac{x}{2}right)+4ln^2left(sin frac{x}{2}right)right)dx\
&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx+4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx
end{align}$$
where within the second integral the substitution $x=frac x2$ was used. Now use the Fourier series expansion
$$ln(sin x)=-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}$$
to further get
$$smallbegin{align}
I_1 = frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2left[-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right]~dx\
&=frac{8pi^3}{3}ln^2(2)-32ln^2(2)int_0^{pi}x^2~dx-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx
end{align}$$
Using integration by part, we get
$$smallbegin{align}
I_1 &= -8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nleft[-x^2frac{sin(2nx)}{2n}+frac{2xcos(2nx)}{4n^2}-frac{2sin(2nx)}{8n^3}right]_{0}^{pi}\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}{n}frac{2pi}{4n^2}\
&= -8pi^3ln^2(2)-16piln(2)sum_{n=1}^{infty}frac{1}{n^3}\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)
end{align}$$
Let
$$I_2 = 4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx$$
Again, use $x = frac{x}{2}$
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+32int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos(2nx)}{n}sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}int_{0}^{pi}x^2cos(2nx)sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}sum_{n=1}^{infty}frac{1}{n}int_{0}^{pi}x^2cos^2(2nx)~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left[frac{x^2sin(4nx)}{8n}-frac{sin(4nx)}{64n^3}+frac{xcos(4nx)}{16n^2}+frac{x^3}{6}right]_{0}^{pi}tag{a}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left(frac{pi}{16n^2}+frac{pi^3}{6}right)\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{2pi}{n^4}+frac{16pi^3}{3n^2}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{pi^5}{45}+frac{8pi^5}{9}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}
end{align}$$
Note that
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}\
&= frac{48pizeta(3)ln(2)+8pi^3ln^2(2)}{3}+frac{41pi^5}{45}
end{align}$$
However, the last term should be $frac{52pi^5}{45}$. I think I did something wrong on step (a).
edited Nov 3 '18 at 23:49
answered Nov 2 '18 at 22:56
LarryLarry
2,53031131
2,53031131
1
$begingroup$
You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
$endgroup$
– Mikalai Parshutsich
Nov 5 '18 at 14:07
$begingroup$
That's what I thought, but I am not sure how to correct my mistake.
$endgroup$
– Larry
Nov 5 '18 at 18:17
add a comment |
1
$begingroup$
You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
$endgroup$
– Mikalai Parshutsich
Nov 5 '18 at 14:07
$begingroup$
That's what I thought, but I am not sure how to correct my mistake.
$endgroup$
– Larry
Nov 5 '18 at 18:17
1
1
$begingroup$
You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
$endgroup$
– Mikalai Parshutsich
Nov 5 '18 at 14:07
$begingroup$
You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
$endgroup$
– Mikalai Parshutsich
Nov 5 '18 at 14:07
$begingroup$
That's what I thought, but I am not sure how to correct my mistake.
$endgroup$
– Larry
Nov 5 '18 at 18:17
$begingroup$
That's what I thought, but I am not sure how to correct my mistake.
$endgroup$
– Larry
Nov 5 '18 at 18:17
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2981049%2fevaluating-int-02-pix2-ln21-cos-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
My bet is on Fourier series ! That ln function has a well known Fourier series !
$endgroup$
– Tolaso
Nov 1 '18 at 22:19
$begingroup$
You can split it into three smaller results that need proving, using $ln (1-cos x)=ln 2+2lnsinfrac{x}{2}$, which at least explains why we get a quadratic in $ln 2$.
$endgroup$
– J.G.
Nov 1 '18 at 22:37
3
$begingroup$
I agree with Tolaso. The Fourier series of $log(1-cos x)$ is straightforward and the Fourier series of $log^2(1-cos x)$ can be computed by convolution and it involves harmonic numbers. Paired with the Fourier series of $x^2$ it converts $I$ into a combination of Euler sums with weight $5$.
$endgroup$
– Jack D'Aurizio
Nov 2 '18 at 2:31
$begingroup$
@Jack: I understand that $ln(1-cos x) = -sum_{n=1}^{infty}frac{cos^n x}{n}$, but how should I compute $ln^2(1-cos x)$ using convolution?
$endgroup$
– Larry
Nov 2 '18 at 13:16