Evaluating $int_{0}^{2pi}x^2ln^2(1-cos x)dx$












10












$begingroup$


I learnt that
$$int_{0}^{frac{pi}{2}} x^2 ln^2 cos x dx
= frac{11 pi^5}{1440} + frac{pi^3}{24} ln^2 2 + frac{pi}{2}zeta(3) ln 2$$

from Sangchul Lee's answer on How to evaluate $I=int_0^{pi/2}x^2ln(sin x)ln(cos x) dx$



I did some other calculations, and it appears that
$$I=int_{0}^{2pi}x^2ln^2(1-cos x)~dx = frac{48pizeta(3)ln2+8pi^3ln^22}{3}+frac{52pi^5}{45}.$$
However, I am not sure how to verify the result. What method should I use to calculate $I$?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    My bet is on Fourier series ! That ln function has a well known Fourier series !
    $endgroup$
    – Tolaso
    Nov 1 '18 at 22:19










  • $begingroup$
    You can split it into three smaller results that need proving, using $ln (1-cos x)=ln 2+2lnsinfrac{x}{2}$, which at least explains why we get a quadratic in $ln 2$.
    $endgroup$
    – J.G.
    Nov 1 '18 at 22:37






  • 3




    $begingroup$
    I agree with Tolaso. The Fourier series of $log(1-cos x)$ is straightforward and the Fourier series of $log^2(1-cos x)$ can be computed by convolution and it involves harmonic numbers. Paired with the Fourier series of $x^2$ it converts $I$ into a combination of Euler sums with weight $5$.
    $endgroup$
    – Jack D'Aurizio
    Nov 2 '18 at 2:31










  • $begingroup$
    @Jack: I understand that $ln(1-cos x) = -sum_{n=1}^{infty}frac{cos^n x}{n}$, but how should I compute $ln^2(1-cos x)$ using convolution?
    $endgroup$
    – Larry
    Nov 2 '18 at 13:16


















10












$begingroup$


I learnt that
$$int_{0}^{frac{pi}{2}} x^2 ln^2 cos x dx
= frac{11 pi^5}{1440} + frac{pi^3}{24} ln^2 2 + frac{pi}{2}zeta(3) ln 2$$

from Sangchul Lee's answer on How to evaluate $I=int_0^{pi/2}x^2ln(sin x)ln(cos x) dx$



I did some other calculations, and it appears that
$$I=int_{0}^{2pi}x^2ln^2(1-cos x)~dx = frac{48pizeta(3)ln2+8pi^3ln^22}{3}+frac{52pi^5}{45}.$$
However, I am not sure how to verify the result. What method should I use to calculate $I$?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    My bet is on Fourier series ! That ln function has a well known Fourier series !
    $endgroup$
    – Tolaso
    Nov 1 '18 at 22:19










  • $begingroup$
    You can split it into three smaller results that need proving, using $ln (1-cos x)=ln 2+2lnsinfrac{x}{2}$, which at least explains why we get a quadratic in $ln 2$.
    $endgroup$
    – J.G.
    Nov 1 '18 at 22:37






  • 3




    $begingroup$
    I agree with Tolaso. The Fourier series of $log(1-cos x)$ is straightforward and the Fourier series of $log^2(1-cos x)$ can be computed by convolution and it involves harmonic numbers. Paired with the Fourier series of $x^2$ it converts $I$ into a combination of Euler sums with weight $5$.
    $endgroup$
    – Jack D'Aurizio
    Nov 2 '18 at 2:31










  • $begingroup$
    @Jack: I understand that $ln(1-cos x) = -sum_{n=1}^{infty}frac{cos^n x}{n}$, but how should I compute $ln^2(1-cos x)$ using convolution?
    $endgroup$
    – Larry
    Nov 2 '18 at 13:16
















10












10








10


4



$begingroup$


I learnt that
$$int_{0}^{frac{pi}{2}} x^2 ln^2 cos x dx
= frac{11 pi^5}{1440} + frac{pi^3}{24} ln^2 2 + frac{pi}{2}zeta(3) ln 2$$

from Sangchul Lee's answer on How to evaluate $I=int_0^{pi/2}x^2ln(sin x)ln(cos x) dx$



I did some other calculations, and it appears that
$$I=int_{0}^{2pi}x^2ln^2(1-cos x)~dx = frac{48pizeta(3)ln2+8pi^3ln^22}{3}+frac{52pi^5}{45}.$$
However, I am not sure how to verify the result. What method should I use to calculate $I$?










share|cite|improve this question











$endgroup$




I learnt that
$$int_{0}^{frac{pi}{2}} x^2 ln^2 cos x dx
= frac{11 pi^5}{1440} + frac{pi^3}{24} ln^2 2 + frac{pi}{2}zeta(3) ln 2$$

from Sangchul Lee's answer on How to evaluate $I=int_0^{pi/2}x^2ln(sin x)ln(cos x) dx$



I did some other calculations, and it appears that
$$I=int_{0}^{2pi}x^2ln^2(1-cos x)~dx = frac{48pizeta(3)ln2+8pi^3ln^22}{3}+frac{52pi^5}{45}.$$
However, I am not sure how to verify the result. What method should I use to calculate $I$?







calculus integration improper-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 19 '18 at 23:21







Larry

















asked Nov 1 '18 at 22:15









LarryLarry

2,53031131




2,53031131








  • 1




    $begingroup$
    My bet is on Fourier series ! That ln function has a well known Fourier series !
    $endgroup$
    – Tolaso
    Nov 1 '18 at 22:19










  • $begingroup$
    You can split it into three smaller results that need proving, using $ln (1-cos x)=ln 2+2lnsinfrac{x}{2}$, which at least explains why we get a quadratic in $ln 2$.
    $endgroup$
    – J.G.
    Nov 1 '18 at 22:37






  • 3




    $begingroup$
    I agree with Tolaso. The Fourier series of $log(1-cos x)$ is straightforward and the Fourier series of $log^2(1-cos x)$ can be computed by convolution and it involves harmonic numbers. Paired with the Fourier series of $x^2$ it converts $I$ into a combination of Euler sums with weight $5$.
    $endgroup$
    – Jack D'Aurizio
    Nov 2 '18 at 2:31










  • $begingroup$
    @Jack: I understand that $ln(1-cos x) = -sum_{n=1}^{infty}frac{cos^n x}{n}$, but how should I compute $ln^2(1-cos x)$ using convolution?
    $endgroup$
    – Larry
    Nov 2 '18 at 13:16
















  • 1




    $begingroup$
    My bet is on Fourier series ! That ln function has a well known Fourier series !
    $endgroup$
    – Tolaso
    Nov 1 '18 at 22:19










  • $begingroup$
    You can split it into three smaller results that need proving, using $ln (1-cos x)=ln 2+2lnsinfrac{x}{2}$, which at least explains why we get a quadratic in $ln 2$.
    $endgroup$
    – J.G.
    Nov 1 '18 at 22:37






  • 3




    $begingroup$
    I agree with Tolaso. The Fourier series of $log(1-cos x)$ is straightforward and the Fourier series of $log^2(1-cos x)$ can be computed by convolution and it involves harmonic numbers. Paired with the Fourier series of $x^2$ it converts $I$ into a combination of Euler sums with weight $5$.
    $endgroup$
    – Jack D'Aurizio
    Nov 2 '18 at 2:31










  • $begingroup$
    @Jack: I understand that $ln(1-cos x) = -sum_{n=1}^{infty}frac{cos^n x}{n}$, but how should I compute $ln^2(1-cos x)$ using convolution?
    $endgroup$
    – Larry
    Nov 2 '18 at 13:16










1




1




$begingroup$
My bet is on Fourier series ! That ln function has a well known Fourier series !
$endgroup$
– Tolaso
Nov 1 '18 at 22:19




$begingroup$
My bet is on Fourier series ! That ln function has a well known Fourier series !
$endgroup$
– Tolaso
Nov 1 '18 at 22:19












$begingroup$
You can split it into three smaller results that need proving, using $ln (1-cos x)=ln 2+2lnsinfrac{x}{2}$, which at least explains why we get a quadratic in $ln 2$.
$endgroup$
– J.G.
Nov 1 '18 at 22:37




$begingroup$
You can split it into three smaller results that need proving, using $ln (1-cos x)=ln 2+2lnsinfrac{x}{2}$, which at least explains why we get a quadratic in $ln 2$.
$endgroup$
– J.G.
Nov 1 '18 at 22:37




3




3




$begingroup$
I agree with Tolaso. The Fourier series of $log(1-cos x)$ is straightforward and the Fourier series of $log^2(1-cos x)$ can be computed by convolution and it involves harmonic numbers. Paired with the Fourier series of $x^2$ it converts $I$ into a combination of Euler sums with weight $5$.
$endgroup$
– Jack D'Aurizio
Nov 2 '18 at 2:31




$begingroup$
I agree with Tolaso. The Fourier series of $log(1-cos x)$ is straightforward and the Fourier series of $log^2(1-cos x)$ can be computed by convolution and it involves harmonic numbers. Paired with the Fourier series of $x^2$ it converts $I$ into a combination of Euler sums with weight $5$.
$endgroup$
– Jack D'Aurizio
Nov 2 '18 at 2:31












$begingroup$
@Jack: I understand that $ln(1-cos x) = -sum_{n=1}^{infty}frac{cos^n x}{n}$, but how should I compute $ln^2(1-cos x)$ using convolution?
$endgroup$
– Larry
Nov 2 '18 at 13:16






$begingroup$
@Jack: I understand that $ln(1-cos x) = -sum_{n=1}^{infty}frac{cos^n x}{n}$, but how should I compute $ln^2(1-cos x)$ using convolution?
$endgroup$
– Larry
Nov 2 '18 at 13:16












2 Answers
2






active

oldest

votes


















3












$begingroup$

After spending a lot of time I've reached the answer (not without help of "MathStackExchangians"). I'll continue the derivation by Larry starting from $I_2$.



I will use the following integral:



$$int_0^pi x^2cos(2kx)~dx=fracpi{2k^2}$$



We have



$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32underbrace{int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx}_{J}
end{align}$$



$$smallbegin{align}
J &= int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos^2 (2nx)}{n^2}+sum_{m,n=1;mneq n}^{infty}frac{cos (2mx)cos (2nx)}{mn}right)~dx\
&=sum_{n=1}^{infty}frac1{n^2}int_{0}^{pi}x^2cos^2 (2nx)~dx+sum_{m,n=1;mneq n}^{infty}frac1{mn}int_{0}^{pi}x^2cos (2mx)cos (2nx)~dx\
&=sum_{n=1}^{infty}frac1{2n^2}int_{0}^{pi}x^2(1+cos (4nx))~dx+sum_{m,n=1;mneq n}^{infty}frac1{2mn}int_{0}^{pi}x^2(cos (2(m+n)x)+cos (2(m-n)x))~dx\
&=sum_{n=1}^{infty}frac1{2n^2}left(int_{0}^{pi}x^2~dx+int_{0}^{pi}x^2cos (4nx)~dxright)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(int_{0}^{pi}x^2cos (2(m+n)x)~dx+int_{0}^{pi}x^2cos (2(m-n)x)~dxright)\
&=sum_{n=1}^{infty}frac1{2n^2}left(frac{pi^3}3+fracpi{2(2n)^2}right)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(fracpi{2(m+n)^2}+fracpi{2(m-n)^2}right)\
&=frac{pi^3}6sum_{n=1}^{infty}frac1{n^2}+fracpi{16}sum_{n=1}^{infty}frac1{n^4}+fracpi2sum_{m,n=1;mneq n}^{infty}frac{m^2+n^2}{mn(m^2-n^2)^2}\
&=frac{pi^3}6frac{pi^2}6+frac{pi}{16}frac{pi^4}{90}+fracpi2frac{11pi^4}{720}=frac{13pi^5}{360}
end{align}
$$



The last sum is evaluated (my thanks to Robert Z and Zvi) in this question



Finally we have



$$smallbegin{align}
I_2 &= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32frac{13pi^5}{360}\
&= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}fracpi{2n^2}+frac{52pi^5}{45}\
&=frac{32}{3}pi^3ln^2(2)+32ln(2)pisum_{n=1}^{infty}frac1{n^3}+frac{52pi^5}{45}\
&= pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}
end{align}$$



And thus



$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}\
&= 16pizeta(3)ln(2)+frac{8pi^3ln^2(2)}{3}+frac{52pi^5}{45}
end{align}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
    $endgroup$
    – mrtaurho
    Nov 7 '18 at 17:46










  • $begingroup$
    @Mikalai: Nice solution, thank you for your answer.
    $endgroup$
    – Larry
    Nov 7 '18 at 20:48










  • $begingroup$
    @mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
    $endgroup$
    – Larry
    Nov 7 '18 at 20:54






  • 1




    $begingroup$
    @Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
    $endgroup$
    – mrtaurho
    Nov 7 '18 at 20:57





















0












$begingroup$

Attempt:



By using the trigonometric identity



$$1-cos(x)=2sin^2left(frac x2right)$$



The given integral becomes



$$smallbegin{align}
I = int_{0}^{2pi}x^2ln^2 (1-cos x)~dx &= int_{0}^{2pi}x^2 ln^2left(2sin^2left(frac x2right)right)~dx\
&=int_{0}^{2pi}x^2left(ln(2)+2lnleft(sin frac{x}{2}right)right)^2dx\
&=int_{0}^{2pi}x^2 left(ln^2(2)+4ln(2)lnleft(sin frac{x}{2}right)+4ln^2left(sin frac{x}{2}right)right)dx\
&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx+4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx
end{align}$$



where within the second integral the substitution $x=frac x2$ was used. Now use the Fourier series expansion



$$ln(sin x)=-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}$$



to further get



$$smallbegin{align}
I_1 = frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2left[-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right]~dx\
&=frac{8pi^3}{3}ln^2(2)-32ln^2(2)int_0^{pi}x^2~dx-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx
end{align}$$

Using integration by part, we get
$$smallbegin{align}
I_1 &= -8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nleft[-x^2frac{sin(2nx)}{2n}+frac{2xcos(2nx)}{4n^2}-frac{2sin(2nx)}{8n^3}right]_{0}^{pi}\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}{n}frac{2pi}{4n^2}\
&= -8pi^3ln^2(2)-16piln(2)sum_{n=1}^{infty}frac{1}{n^3}\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)
end{align}$$

Let
$$I_2 = 4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx$$
Again, use $x = frac{x}{2}$
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+32int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos(2nx)}{n}sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}int_{0}^{pi}x^2cos(2nx)sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}sum_{n=1}^{infty}frac{1}{n}int_{0}^{pi}x^2cos^2(2nx)~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left[frac{x^2sin(4nx)}{8n}-frac{sin(4nx)}{64n^3}+frac{xcos(4nx)}{16n^2}+frac{x^3}{6}right]_{0}^{pi}tag{a}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left(frac{pi}{16n^2}+frac{pi^3}{6}right)\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{2pi}{n^4}+frac{16pi^3}{3n^2}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{pi^5}{45}+frac{8pi^5}{9}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}
end{align}$$

Note that
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}\
&= frac{48pizeta(3)ln(2)+8pi^3ln^2(2)}{3}+frac{41pi^5}{45}
end{align}$$

However, the last term should be $frac{52pi^5}{45}$. I think I did something wrong on step (a).






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
    $endgroup$
    – Mikalai Parshutsich
    Nov 5 '18 at 14:07










  • $begingroup$
    That's what I thought, but I am not sure how to correct my mistake.
    $endgroup$
    – Larry
    Nov 5 '18 at 18:17












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2981049%2fevaluating-int-02-pix2-ln21-cos-xdx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

After spending a lot of time I've reached the answer (not without help of "MathStackExchangians"). I'll continue the derivation by Larry starting from $I_2$.



I will use the following integral:



$$int_0^pi x^2cos(2kx)~dx=fracpi{2k^2}$$



We have



$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32underbrace{int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx}_{J}
end{align}$$



$$smallbegin{align}
J &= int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos^2 (2nx)}{n^2}+sum_{m,n=1;mneq n}^{infty}frac{cos (2mx)cos (2nx)}{mn}right)~dx\
&=sum_{n=1}^{infty}frac1{n^2}int_{0}^{pi}x^2cos^2 (2nx)~dx+sum_{m,n=1;mneq n}^{infty}frac1{mn}int_{0}^{pi}x^2cos (2mx)cos (2nx)~dx\
&=sum_{n=1}^{infty}frac1{2n^2}int_{0}^{pi}x^2(1+cos (4nx))~dx+sum_{m,n=1;mneq n}^{infty}frac1{2mn}int_{0}^{pi}x^2(cos (2(m+n)x)+cos (2(m-n)x))~dx\
&=sum_{n=1}^{infty}frac1{2n^2}left(int_{0}^{pi}x^2~dx+int_{0}^{pi}x^2cos (4nx)~dxright)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(int_{0}^{pi}x^2cos (2(m+n)x)~dx+int_{0}^{pi}x^2cos (2(m-n)x)~dxright)\
&=sum_{n=1}^{infty}frac1{2n^2}left(frac{pi^3}3+fracpi{2(2n)^2}right)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(fracpi{2(m+n)^2}+fracpi{2(m-n)^2}right)\
&=frac{pi^3}6sum_{n=1}^{infty}frac1{n^2}+fracpi{16}sum_{n=1}^{infty}frac1{n^4}+fracpi2sum_{m,n=1;mneq n}^{infty}frac{m^2+n^2}{mn(m^2-n^2)^2}\
&=frac{pi^3}6frac{pi^2}6+frac{pi}{16}frac{pi^4}{90}+fracpi2frac{11pi^4}{720}=frac{13pi^5}{360}
end{align}
$$



The last sum is evaluated (my thanks to Robert Z and Zvi) in this question



Finally we have



$$smallbegin{align}
I_2 &= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32frac{13pi^5}{360}\
&= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}fracpi{2n^2}+frac{52pi^5}{45}\
&=frac{32}{3}pi^3ln^2(2)+32ln(2)pisum_{n=1}^{infty}frac1{n^3}+frac{52pi^5}{45}\
&= pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}
end{align}$$



And thus



$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}\
&= 16pizeta(3)ln(2)+frac{8pi^3ln^2(2)}{3}+frac{52pi^5}{45}
end{align}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
    $endgroup$
    – mrtaurho
    Nov 7 '18 at 17:46










  • $begingroup$
    @Mikalai: Nice solution, thank you for your answer.
    $endgroup$
    – Larry
    Nov 7 '18 at 20:48










  • $begingroup$
    @mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
    $endgroup$
    – Larry
    Nov 7 '18 at 20:54






  • 1




    $begingroup$
    @Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
    $endgroup$
    – mrtaurho
    Nov 7 '18 at 20:57


















3












$begingroup$

After spending a lot of time I've reached the answer (not without help of "MathStackExchangians"). I'll continue the derivation by Larry starting from $I_2$.



I will use the following integral:



$$int_0^pi x^2cos(2kx)~dx=fracpi{2k^2}$$



We have



$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32underbrace{int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx}_{J}
end{align}$$



$$smallbegin{align}
J &= int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos^2 (2nx)}{n^2}+sum_{m,n=1;mneq n}^{infty}frac{cos (2mx)cos (2nx)}{mn}right)~dx\
&=sum_{n=1}^{infty}frac1{n^2}int_{0}^{pi}x^2cos^2 (2nx)~dx+sum_{m,n=1;mneq n}^{infty}frac1{mn}int_{0}^{pi}x^2cos (2mx)cos (2nx)~dx\
&=sum_{n=1}^{infty}frac1{2n^2}int_{0}^{pi}x^2(1+cos (4nx))~dx+sum_{m,n=1;mneq n}^{infty}frac1{2mn}int_{0}^{pi}x^2(cos (2(m+n)x)+cos (2(m-n)x))~dx\
&=sum_{n=1}^{infty}frac1{2n^2}left(int_{0}^{pi}x^2~dx+int_{0}^{pi}x^2cos (4nx)~dxright)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(int_{0}^{pi}x^2cos (2(m+n)x)~dx+int_{0}^{pi}x^2cos (2(m-n)x)~dxright)\
&=sum_{n=1}^{infty}frac1{2n^2}left(frac{pi^3}3+fracpi{2(2n)^2}right)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(fracpi{2(m+n)^2}+fracpi{2(m-n)^2}right)\
&=frac{pi^3}6sum_{n=1}^{infty}frac1{n^2}+fracpi{16}sum_{n=1}^{infty}frac1{n^4}+fracpi2sum_{m,n=1;mneq n}^{infty}frac{m^2+n^2}{mn(m^2-n^2)^2}\
&=frac{pi^3}6frac{pi^2}6+frac{pi}{16}frac{pi^4}{90}+fracpi2frac{11pi^4}{720}=frac{13pi^5}{360}
end{align}
$$



The last sum is evaluated (my thanks to Robert Z and Zvi) in this question



Finally we have



$$smallbegin{align}
I_2 &= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32frac{13pi^5}{360}\
&= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}fracpi{2n^2}+frac{52pi^5}{45}\
&=frac{32}{3}pi^3ln^2(2)+32ln(2)pisum_{n=1}^{infty}frac1{n^3}+frac{52pi^5}{45}\
&= pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}
end{align}$$



And thus



$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}\
&= 16pizeta(3)ln(2)+frac{8pi^3ln^2(2)}{3}+frac{52pi^5}{45}
end{align}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
    $endgroup$
    – mrtaurho
    Nov 7 '18 at 17:46










  • $begingroup$
    @Mikalai: Nice solution, thank you for your answer.
    $endgroup$
    – Larry
    Nov 7 '18 at 20:48










  • $begingroup$
    @mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
    $endgroup$
    – Larry
    Nov 7 '18 at 20:54






  • 1




    $begingroup$
    @Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
    $endgroup$
    – mrtaurho
    Nov 7 '18 at 20:57
















3












3








3





$begingroup$

After spending a lot of time I've reached the answer (not without help of "MathStackExchangians"). I'll continue the derivation by Larry starting from $I_2$.



I will use the following integral:



$$int_0^pi x^2cos(2kx)~dx=fracpi{2k^2}$$



We have



$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32underbrace{int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx}_{J}
end{align}$$



$$smallbegin{align}
J &= int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos^2 (2nx)}{n^2}+sum_{m,n=1;mneq n}^{infty}frac{cos (2mx)cos (2nx)}{mn}right)~dx\
&=sum_{n=1}^{infty}frac1{n^2}int_{0}^{pi}x^2cos^2 (2nx)~dx+sum_{m,n=1;mneq n}^{infty}frac1{mn}int_{0}^{pi}x^2cos (2mx)cos (2nx)~dx\
&=sum_{n=1}^{infty}frac1{2n^2}int_{0}^{pi}x^2(1+cos (4nx))~dx+sum_{m,n=1;mneq n}^{infty}frac1{2mn}int_{0}^{pi}x^2(cos (2(m+n)x)+cos (2(m-n)x))~dx\
&=sum_{n=1}^{infty}frac1{2n^2}left(int_{0}^{pi}x^2~dx+int_{0}^{pi}x^2cos (4nx)~dxright)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(int_{0}^{pi}x^2cos (2(m+n)x)~dx+int_{0}^{pi}x^2cos (2(m-n)x)~dxright)\
&=sum_{n=1}^{infty}frac1{2n^2}left(frac{pi^3}3+fracpi{2(2n)^2}right)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(fracpi{2(m+n)^2}+fracpi{2(m-n)^2}right)\
&=frac{pi^3}6sum_{n=1}^{infty}frac1{n^2}+fracpi{16}sum_{n=1}^{infty}frac1{n^4}+fracpi2sum_{m,n=1;mneq n}^{infty}frac{m^2+n^2}{mn(m^2-n^2)^2}\
&=frac{pi^3}6frac{pi^2}6+frac{pi}{16}frac{pi^4}{90}+fracpi2frac{11pi^4}{720}=frac{13pi^5}{360}
end{align}
$$



The last sum is evaluated (my thanks to Robert Z and Zvi) in this question



Finally we have



$$smallbegin{align}
I_2 &= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32frac{13pi^5}{360}\
&= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}fracpi{2n^2}+frac{52pi^5}{45}\
&=frac{32}{3}pi^3ln^2(2)+32ln(2)pisum_{n=1}^{infty}frac1{n^3}+frac{52pi^5}{45}\
&= pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}
end{align}$$



And thus



$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}\
&= 16pizeta(3)ln(2)+frac{8pi^3ln^2(2)}{3}+frac{52pi^5}{45}
end{align}$$






share|cite|improve this answer









$endgroup$



After spending a lot of time I've reached the answer (not without help of "MathStackExchangians"). I'll continue the derivation by Larry starting from $I_2$.



I will use the following integral:



$$int_0^pi x^2cos(2kx)~dx=fracpi{2k^2}$$



We have



$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32underbrace{int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx}_{J}
end{align}$$



$$smallbegin{align}
J &= int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos^2 (2nx)}{n^2}+sum_{m,n=1;mneq n}^{infty}frac{cos (2mx)cos (2nx)}{mn}right)~dx\
&=sum_{n=1}^{infty}frac1{n^2}int_{0}^{pi}x^2cos^2 (2nx)~dx+sum_{m,n=1;mneq n}^{infty}frac1{mn}int_{0}^{pi}x^2cos (2mx)cos (2nx)~dx\
&=sum_{n=1}^{infty}frac1{2n^2}int_{0}^{pi}x^2(1+cos (4nx))~dx+sum_{m,n=1;mneq n}^{infty}frac1{2mn}int_{0}^{pi}x^2(cos (2(m+n)x)+cos (2(m-n)x))~dx\
&=sum_{n=1}^{infty}frac1{2n^2}left(int_{0}^{pi}x^2~dx+int_{0}^{pi}x^2cos (4nx)~dxright)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(int_{0}^{pi}x^2cos (2(m+n)x)~dx+int_{0}^{pi}x^2cos (2(m-n)x)~dxright)\
&=sum_{n=1}^{infty}frac1{2n^2}left(frac{pi^3}3+fracpi{2(2n)^2}right)+sum_{m,n=1;mneq n}^{infty}frac1{2mn}left(fracpi{2(m+n)^2}+fracpi{2(m-n)^2}right)\
&=frac{pi^3}6sum_{n=1}^{infty}frac1{n^2}+fracpi{16}sum_{n=1}^{infty}frac1{n^4}+fracpi2sum_{m,n=1;mneq n}^{infty}frac{m^2+n^2}{mn(m^2-n^2)^2}\
&=frac{pi^3}6frac{pi^2}6+frac{pi}{16}frac{pi^4}{90}+fracpi2frac{11pi^4}{720}=frac{13pi^5}{360}
end{align}
$$



The last sum is evaluated (my thanks to Robert Z and Zvi) in this question



Finally we have



$$smallbegin{align}
I_2 &= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32frac{13pi^5}{360}\
&= frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}fracpi{2n^2}+frac{52pi^5}{45}\
&=frac{32}{3}pi^3ln^2(2)+32ln(2)pisum_{n=1}^{infty}frac1{n^3}+frac{52pi^5}{45}\
&= pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}
end{align}$$



And thus



$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{52pi^5}{45}\
&= 16pizeta(3)ln(2)+frac{8pi^3ln^2(2)}{3}+frac{52pi^5}{45}
end{align}$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 6 '18 at 13:06









Mikalai ParshutsichMikalai Parshutsich

473315




473315












  • $begingroup$
    Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
    $endgroup$
    – mrtaurho
    Nov 7 '18 at 17:46










  • $begingroup$
    @Mikalai: Nice solution, thank you for your answer.
    $endgroup$
    – Larry
    Nov 7 '18 at 20:48










  • $begingroup$
    @mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
    $endgroup$
    – Larry
    Nov 7 '18 at 20:54






  • 1




    $begingroup$
    @Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
    $endgroup$
    – mrtaurho
    Nov 7 '18 at 20:57




















  • $begingroup$
    Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
    $endgroup$
    – mrtaurho
    Nov 7 '18 at 17:46










  • $begingroup$
    @Mikalai: Nice solution, thank you for your answer.
    $endgroup$
    – Larry
    Nov 7 '18 at 20:48










  • $begingroup$
    @mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
    $endgroup$
    – Larry
    Nov 7 '18 at 20:54






  • 1




    $begingroup$
    @Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
    $endgroup$
    – mrtaurho
    Nov 7 '18 at 20:57


















$begingroup$
Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
$endgroup$
– mrtaurho
Nov 7 '18 at 17:46




$begingroup$
Well done. I am not sure whether you were aware of this question I posted on AoPS or not. Howsoever I just wanted to add the link to a slightly different evaluation of the integral $J$ :)
$endgroup$
– mrtaurho
Nov 7 '18 at 17:46












$begingroup$
@Mikalai: Nice solution, thank you for your answer.
$endgroup$
– Larry
Nov 7 '18 at 20:48




$begingroup$
@Mikalai: Nice solution, thank you for your answer.
$endgroup$
– Larry
Nov 7 '18 at 20:48












$begingroup$
@mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
$endgroup$
– Larry
Nov 7 '18 at 20:54




$begingroup$
@mrtaurho: I used the same method that you had showed me in another question. I also checked out your question in AOPS. It is a clear solution.
$endgroup$
– Larry
Nov 7 '18 at 20:54




1




1




$begingroup$
@Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
$endgroup$
– mrtaurho
Nov 7 '18 at 20:57






$begingroup$
@Larry Yes, I saw it within your own answer. I am happy that I was able to help :)
$endgroup$
– mrtaurho
Nov 7 '18 at 20:57













0












$begingroup$

Attempt:



By using the trigonometric identity



$$1-cos(x)=2sin^2left(frac x2right)$$



The given integral becomes



$$smallbegin{align}
I = int_{0}^{2pi}x^2ln^2 (1-cos x)~dx &= int_{0}^{2pi}x^2 ln^2left(2sin^2left(frac x2right)right)~dx\
&=int_{0}^{2pi}x^2left(ln(2)+2lnleft(sin frac{x}{2}right)right)^2dx\
&=int_{0}^{2pi}x^2 left(ln^2(2)+4ln(2)lnleft(sin frac{x}{2}right)+4ln^2left(sin frac{x}{2}right)right)dx\
&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx+4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx
end{align}$$



where within the second integral the substitution $x=frac x2$ was used. Now use the Fourier series expansion



$$ln(sin x)=-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}$$



to further get



$$smallbegin{align}
I_1 = frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2left[-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right]~dx\
&=frac{8pi^3}{3}ln^2(2)-32ln^2(2)int_0^{pi}x^2~dx-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx
end{align}$$

Using integration by part, we get
$$smallbegin{align}
I_1 &= -8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nleft[-x^2frac{sin(2nx)}{2n}+frac{2xcos(2nx)}{4n^2}-frac{2sin(2nx)}{8n^3}right]_{0}^{pi}\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}{n}frac{2pi}{4n^2}\
&= -8pi^3ln^2(2)-16piln(2)sum_{n=1}^{infty}frac{1}{n^3}\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)
end{align}$$

Let
$$I_2 = 4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx$$
Again, use $x = frac{x}{2}$
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+32int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos(2nx)}{n}sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}int_{0}^{pi}x^2cos(2nx)sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}sum_{n=1}^{infty}frac{1}{n}int_{0}^{pi}x^2cos^2(2nx)~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left[frac{x^2sin(4nx)}{8n}-frac{sin(4nx)}{64n^3}+frac{xcos(4nx)}{16n^2}+frac{x^3}{6}right]_{0}^{pi}tag{a}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left(frac{pi}{16n^2}+frac{pi^3}{6}right)\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{2pi}{n^4}+frac{16pi^3}{3n^2}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{pi^5}{45}+frac{8pi^5}{9}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}
end{align}$$

Note that
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}\
&= frac{48pizeta(3)ln(2)+8pi^3ln^2(2)}{3}+frac{41pi^5}{45}
end{align}$$

However, the last term should be $frac{52pi^5}{45}$. I think I did something wrong on step (a).






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
    $endgroup$
    – Mikalai Parshutsich
    Nov 5 '18 at 14:07










  • $begingroup$
    That's what I thought, but I am not sure how to correct my mistake.
    $endgroup$
    – Larry
    Nov 5 '18 at 18:17
















0












$begingroup$

Attempt:



By using the trigonometric identity



$$1-cos(x)=2sin^2left(frac x2right)$$



The given integral becomes



$$smallbegin{align}
I = int_{0}^{2pi}x^2ln^2 (1-cos x)~dx &= int_{0}^{2pi}x^2 ln^2left(2sin^2left(frac x2right)right)~dx\
&=int_{0}^{2pi}x^2left(ln(2)+2lnleft(sin frac{x}{2}right)right)^2dx\
&=int_{0}^{2pi}x^2 left(ln^2(2)+4ln(2)lnleft(sin frac{x}{2}right)+4ln^2left(sin frac{x}{2}right)right)dx\
&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx+4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx
end{align}$$



where within the second integral the substitution $x=frac x2$ was used. Now use the Fourier series expansion



$$ln(sin x)=-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}$$



to further get



$$smallbegin{align}
I_1 = frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2left[-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right]~dx\
&=frac{8pi^3}{3}ln^2(2)-32ln^2(2)int_0^{pi}x^2~dx-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx
end{align}$$

Using integration by part, we get
$$smallbegin{align}
I_1 &= -8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nleft[-x^2frac{sin(2nx)}{2n}+frac{2xcos(2nx)}{4n^2}-frac{2sin(2nx)}{8n^3}right]_{0}^{pi}\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}{n}frac{2pi}{4n^2}\
&= -8pi^3ln^2(2)-16piln(2)sum_{n=1}^{infty}frac{1}{n^3}\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)
end{align}$$

Let
$$I_2 = 4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx$$
Again, use $x = frac{x}{2}$
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+32int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos(2nx)}{n}sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}int_{0}^{pi}x^2cos(2nx)sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}sum_{n=1}^{infty}frac{1}{n}int_{0}^{pi}x^2cos^2(2nx)~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left[frac{x^2sin(4nx)}{8n}-frac{sin(4nx)}{64n^3}+frac{xcos(4nx)}{16n^2}+frac{x^3}{6}right]_{0}^{pi}tag{a}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left(frac{pi}{16n^2}+frac{pi^3}{6}right)\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{2pi}{n^4}+frac{16pi^3}{3n^2}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{pi^5}{45}+frac{8pi^5}{9}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}
end{align}$$

Note that
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}\
&= frac{48pizeta(3)ln(2)+8pi^3ln^2(2)}{3}+frac{41pi^5}{45}
end{align}$$

However, the last term should be $frac{52pi^5}{45}$. I think I did something wrong on step (a).






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
    $endgroup$
    – Mikalai Parshutsich
    Nov 5 '18 at 14:07










  • $begingroup$
    That's what I thought, but I am not sure how to correct my mistake.
    $endgroup$
    – Larry
    Nov 5 '18 at 18:17














0












0








0





$begingroup$

Attempt:



By using the trigonometric identity



$$1-cos(x)=2sin^2left(frac x2right)$$



The given integral becomes



$$smallbegin{align}
I = int_{0}^{2pi}x^2ln^2 (1-cos x)~dx &= int_{0}^{2pi}x^2 ln^2left(2sin^2left(frac x2right)right)~dx\
&=int_{0}^{2pi}x^2left(ln(2)+2lnleft(sin frac{x}{2}right)right)^2dx\
&=int_{0}^{2pi}x^2 left(ln^2(2)+4ln(2)lnleft(sin frac{x}{2}right)+4ln^2left(sin frac{x}{2}right)right)dx\
&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx+4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx
end{align}$$



where within the second integral the substitution $x=frac x2$ was used. Now use the Fourier series expansion



$$ln(sin x)=-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}$$



to further get



$$smallbegin{align}
I_1 = frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2left[-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right]~dx\
&=frac{8pi^3}{3}ln^2(2)-32ln^2(2)int_0^{pi}x^2~dx-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx
end{align}$$

Using integration by part, we get
$$smallbegin{align}
I_1 &= -8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nleft[-x^2frac{sin(2nx)}{2n}+frac{2xcos(2nx)}{4n^2}-frac{2sin(2nx)}{8n^3}right]_{0}^{pi}\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}{n}frac{2pi}{4n^2}\
&= -8pi^3ln^2(2)-16piln(2)sum_{n=1}^{infty}frac{1}{n^3}\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)
end{align}$$

Let
$$I_2 = 4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx$$
Again, use $x = frac{x}{2}$
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+32int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos(2nx)}{n}sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}int_{0}^{pi}x^2cos(2nx)sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}sum_{n=1}^{infty}frac{1}{n}int_{0}^{pi}x^2cos^2(2nx)~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left[frac{x^2sin(4nx)}{8n}-frac{sin(4nx)}{64n^3}+frac{xcos(4nx)}{16n^2}+frac{x^3}{6}right]_{0}^{pi}tag{a}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left(frac{pi}{16n^2}+frac{pi^3}{6}right)\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{2pi}{n^4}+frac{16pi^3}{3n^2}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{pi^5}{45}+frac{8pi^5}{9}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}
end{align}$$

Note that
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}\
&= frac{48pizeta(3)ln(2)+8pi^3ln^2(2)}{3}+frac{41pi^5}{45}
end{align}$$

However, the last term should be $frac{52pi^5}{45}$. I think I did something wrong on step (a).






share|cite|improve this answer











$endgroup$



Attempt:



By using the trigonometric identity



$$1-cos(x)=2sin^2left(frac x2right)$$



The given integral becomes



$$smallbegin{align}
I = int_{0}^{2pi}x^2ln^2 (1-cos x)~dx &= int_{0}^{2pi}x^2 ln^2left(2sin^2left(frac x2right)right)~dx\
&=int_{0}^{2pi}x^2left(ln(2)+2lnleft(sin frac{x}{2}right)right)^2dx\
&=int_{0}^{2pi}x^2 left(ln^2(2)+4ln(2)lnleft(sin frac{x}{2}right)+4ln^2left(sin frac{x}{2}right)right)dx\
&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx+4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx
end{align}$$



where within the second integral the substitution $x=frac x2$ was used. Now use the Fourier series expansion



$$ln(sin x)=-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}$$



to further get



$$smallbegin{align}
I_1 = frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2ln(sin x)~dx&=frac{8pi^3}{3}ln^2(2)+32ln(2)int_0^{pi}x^2left[-ln(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right]~dx\
&=frac{8pi^3}{3}ln^2(2)-32ln^2(2)int_0^{pi}x^2~dx-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx
end{align}$$

Using integration by part, we get
$$smallbegin{align}
I_1 &= -8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nint_0^{pi}x^2cos(2nx)~dx\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}nleft[-x^2frac{sin(2nx)}{2n}+frac{2xcos(2nx)}{4n^2}-frac{2sin(2nx)}{8n^3}right]_{0}^{pi}\
&=-8pi^3ln^2(2)-sum_{n=1}^{infty}frac{32ln(2)}{n}frac{2pi}{4n^2}\
&= -8pi^3ln^2(2)-16piln(2)sum_{n=1}^{infty}frac{1}{n^3}\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)
end{align}$$

Let
$$I_2 = 4int_{0}^{2pi}x^2ln^2left(sin frac{x}{2}right)~dx$$
Again, use $x = frac{x}{2}$
$$smallbegin{align}
I_2 &= 32int_{0}^{pi}x^2ln^2(sin x)~dx\
&= 32int_{0}^{pi}x^2left(ln(2)+sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&= 32int_{0}^{pi}x^2ln^2(2)~dx+64ln(2)int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos (2nx)}{n}~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+sum_{n=1}^{infty}frac{64ln(2)}{n}int_{0}^{pi}x^2cos(2nx)~dx+32int_{0}^{pi}x^2left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+32int_{0}^{pi}x^2sum_{n=1}^{infty}frac{cos(2nx)}{n}sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}int_{0}^{pi}x^2cos(2nx)sum_{n=1}^{infty}frac{cos(2nx)}{n}~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n}sum_{n=1}^{infty}frac{1}{n}int_{0}^{pi}x^2cos^2(2nx)~dx\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left[frac{x^2sin(4nx)}{8n}-frac{sin(4nx)}{64n^3}+frac{xcos(4nx)}{16n^2}+frac{x^3}{6}right]_{0}^{pi}tag{a}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{32}{n^2}left(frac{pi}{16n^2}+frac{pi^3}{6}right)\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+sum_{n=1}^{infty}frac{2pi}{n^4}+frac{16pi^3}{3n^2}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{pi^5}{45}+frac{8pi^5}{9}\
&=frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}
end{align}$$

Note that
$$begin{align}
I&=I_1+I_2\
&= -8pi^3ln^2(2)-16piln(2)zeta(3)+frac{32}{3}pi^3ln^2(2)+32piln(2)zeta(3)+frac{41pi^5}{45}\
&= frac{48pizeta(3)ln(2)+8pi^3ln^2(2)}{3}+frac{41pi^5}{45}
end{align}$$

However, the last term should be $frac{52pi^5}{45}$. I think I did something wrong on step (a).







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Nov 3 '18 at 23:49

























answered Nov 2 '18 at 22:56









LarryLarry

2,53031131




2,53031131








  • 1




    $begingroup$
    You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
    $endgroup$
    – Mikalai Parshutsich
    Nov 5 '18 at 14:07










  • $begingroup$
    That's what I thought, but I am not sure how to correct my mistake.
    $endgroup$
    – Larry
    Nov 5 '18 at 18:17














  • 1




    $begingroup$
    You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
    $endgroup$
    – Mikalai Parshutsich
    Nov 5 '18 at 14:07










  • $begingroup$
    That's what I thought, but I am not sure how to correct my mistake.
    $endgroup$
    – Larry
    Nov 5 '18 at 18:17








1




1




$begingroup$
You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
$endgroup$
– Mikalai Parshutsich
Nov 5 '18 at 14:07




$begingroup$
You've expanded the square of the sum in wrong way. You've resulted $left(sum_{n=1}^{infty}frac{cos (2nx)}{n}right)^2=sum_{n=1}^{infty}left(frac{cos (2nx)}{n}right)^2$
$endgroup$
– Mikalai Parshutsich
Nov 5 '18 at 14:07












$begingroup$
That's what I thought, but I am not sure how to correct my mistake.
$endgroup$
– Larry
Nov 5 '18 at 18:17




$begingroup$
That's what I thought, but I am not sure how to correct my mistake.
$endgroup$
– Larry
Nov 5 '18 at 18:17


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2981049%2fevaluating-int-02-pix2-ln21-cos-xdx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...