If $|langle f, g rangle| = | f |_2 |g|_2$ then $exists alpha, beta in mathbb{R} $ s.t. $alpha f = beta g $
$begingroup$
Show the following are equivalent, for $f, g in L^2[a,b]$
a. $|langle f, g rangle| = |f|_2 |g|_2$
b. $exists alpha, beta in mathbb{R} $ s.t. $alpha f = beta g $
where $langle cdot , cdot rangle$ : inner product.
Try
(b $Rightarrow$ a) If $alpha=0$, things are trivial. Otherwise, note $f = frac{beta}{alpha} g$
$|langle f, g rangle| = |frac{beta}{alpha}| langle g, g rangle = |frac{beta}{alpha}| |g|_2 cdot|g|_2 = |f|_2 |g|_2 $
But I'm stuck at (a $Rightarrow$ b).
real-analysis measure-theory
$endgroup$
add a comment |
$begingroup$
Show the following are equivalent, for $f, g in L^2[a,b]$
a. $|langle f, g rangle| = |f|_2 |g|_2$
b. $exists alpha, beta in mathbb{R} $ s.t. $alpha f = beta g $
where $langle cdot , cdot rangle$ : inner product.
Try
(b $Rightarrow$ a) If $alpha=0$, things are trivial. Otherwise, note $f = frac{beta}{alpha} g$
$|langle f, g rangle| = |frac{beta}{alpha}| langle g, g rangle = |frac{beta}{alpha}| |g|_2 cdot|g|_2 = |f|_2 |g|_2 $
But I'm stuck at (a $Rightarrow$ b).
real-analysis measure-theory
$endgroup$
add a comment |
$begingroup$
Show the following are equivalent, for $f, g in L^2[a,b]$
a. $|langle f, g rangle| = |f|_2 |g|_2$
b. $exists alpha, beta in mathbb{R} $ s.t. $alpha f = beta g $
where $langle cdot , cdot rangle$ : inner product.
Try
(b $Rightarrow$ a) If $alpha=0$, things are trivial. Otherwise, note $f = frac{beta}{alpha} g$
$|langle f, g rangle| = |frac{beta}{alpha}| langle g, g rangle = |frac{beta}{alpha}| |g|_2 cdot|g|_2 = |f|_2 |g|_2 $
But I'm stuck at (a $Rightarrow$ b).
real-analysis measure-theory
$endgroup$
Show the following are equivalent, for $f, g in L^2[a,b]$
a. $|langle f, g rangle| = |f|_2 |g|_2$
b. $exists alpha, beta in mathbb{R} $ s.t. $alpha f = beta g $
where $langle cdot , cdot rangle$ : inner product.
Try
(b $Rightarrow$ a) If $alpha=0$, things are trivial. Otherwise, note $f = frac{beta}{alpha} g$
$|langle f, g rangle| = |frac{beta}{alpha}| langle g, g rangle = |frac{beta}{alpha}| |g|_2 cdot|g|_2 = |f|_2 |g|_2 $
But I'm stuck at (a $Rightarrow$ b).
real-analysis measure-theory
real-analysis measure-theory
edited Dec 20 '18 at 13:53
Nathanael Skrepek
1,7231615
1,7231615
asked Dec 20 '18 at 12:53
MoreblueMoreblue
9151317
9151317
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
One can consider the function $f:mathbb{R}rightarrow mathbb{R},xmapsto ||f-xg||^2$. Since we have $||f-xg||^2=langle f-xg,f-xgrangle=||f||^2-2xlangle f,grangle + x^2||g||^2$, this gives rise to a quadratic function, which has a real root, because the discriminant is $left(2langle f,grangleright)^2-4||u||^2||v||^2=4langle f,grangle^2-4langle f,grangle^2=0$.
Hence there is some $xin mathbb{R}$, s.t. $f-xg=0$, or equivalently $f=xg$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047499%2fif-langle-f-g-rangle-f-2-g-2-then-exists-alpha-beta-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
One can consider the function $f:mathbb{R}rightarrow mathbb{R},xmapsto ||f-xg||^2$. Since we have $||f-xg||^2=langle f-xg,f-xgrangle=||f||^2-2xlangle f,grangle + x^2||g||^2$, this gives rise to a quadratic function, which has a real root, because the discriminant is $left(2langle f,grangleright)^2-4||u||^2||v||^2=4langle f,grangle^2-4langle f,grangle^2=0$.
Hence there is some $xin mathbb{R}$, s.t. $f-xg=0$, or equivalently $f=xg$.
$endgroup$
add a comment |
$begingroup$
One can consider the function $f:mathbb{R}rightarrow mathbb{R},xmapsto ||f-xg||^2$. Since we have $||f-xg||^2=langle f-xg,f-xgrangle=||f||^2-2xlangle f,grangle + x^2||g||^2$, this gives rise to a quadratic function, which has a real root, because the discriminant is $left(2langle f,grangleright)^2-4||u||^2||v||^2=4langle f,grangle^2-4langle f,grangle^2=0$.
Hence there is some $xin mathbb{R}$, s.t. $f-xg=0$, or equivalently $f=xg$.
$endgroup$
add a comment |
$begingroup$
One can consider the function $f:mathbb{R}rightarrow mathbb{R},xmapsto ||f-xg||^2$. Since we have $||f-xg||^2=langle f-xg,f-xgrangle=||f||^2-2xlangle f,grangle + x^2||g||^2$, this gives rise to a quadratic function, which has a real root, because the discriminant is $left(2langle f,grangleright)^2-4||u||^2||v||^2=4langle f,grangle^2-4langle f,grangle^2=0$.
Hence there is some $xin mathbb{R}$, s.t. $f-xg=0$, or equivalently $f=xg$.
$endgroup$
One can consider the function $f:mathbb{R}rightarrow mathbb{R},xmapsto ||f-xg||^2$. Since we have $||f-xg||^2=langle f-xg,f-xgrangle=||f||^2-2xlangle f,grangle + x^2||g||^2$, this gives rise to a quadratic function, which has a real root, because the discriminant is $left(2langle f,grangleright)^2-4||u||^2||v||^2=4langle f,grangle^2-4langle f,grangle^2=0$.
Hence there is some $xin mathbb{R}$, s.t. $f-xg=0$, or equivalently $f=xg$.
edited Dec 20 '18 at 15:13
BigbearZzz
9,04221653
9,04221653
answered Dec 20 '18 at 13:11
Student7Student7
1839
1839
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047499%2fif-langle-f-g-rangle-f-2-g-2-then-exists-alpha-beta-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown