Bound for $(1-frac{1}{n})^t$












0














I'm having trouble proving that:



For any constant $epsilon > 0$ and $n > 1$:



$$
left(1-frac{1}{n}right)^{n lgleft(n^{epsilon}right)} leq frac{1}{n^{epsilon}}$$



I'm using $lg(n)$ as $log_2(n)$. Any help is appreciated, hints for critical points of the proof are welcome as well.










share|cite|improve this question
























  • Take $log_2$ on both sides. $implies n:lg(n^{varepsilon}):lgleft(1+dfrac1nright)leq-lg(n^{varepsilon})$.
    – Yadati Kiran
    Nov 25 '18 at 9:56












  • Observe $left(1+dfrac1nright)<2:forall:n>1implies lgleft(1+dfrac1nright)<0.$
    – Yadati Kiran
    Nov 25 '18 at 10:01












  • Thank you, sir!
    – figure09
    Nov 25 '18 at 10:21










  • $left(1-dfrac1nright)$ and not $left(1+dfrac1nright)$. For being sure check $displaystyle lim_{ntoinfty}n:lgleft(1-dfrac1nright)$.
    – Yadati Kiran
    Nov 25 '18 at 10:49


















0














I'm having trouble proving that:



For any constant $epsilon > 0$ and $n > 1$:



$$
left(1-frac{1}{n}right)^{n lgleft(n^{epsilon}right)} leq frac{1}{n^{epsilon}}$$



I'm using $lg(n)$ as $log_2(n)$. Any help is appreciated, hints for critical points of the proof are welcome as well.










share|cite|improve this question
























  • Take $log_2$ on both sides. $implies n:lg(n^{varepsilon}):lgleft(1+dfrac1nright)leq-lg(n^{varepsilon})$.
    – Yadati Kiran
    Nov 25 '18 at 9:56












  • Observe $left(1+dfrac1nright)<2:forall:n>1implies lgleft(1+dfrac1nright)<0.$
    – Yadati Kiran
    Nov 25 '18 at 10:01












  • Thank you, sir!
    – figure09
    Nov 25 '18 at 10:21










  • $left(1-dfrac1nright)$ and not $left(1+dfrac1nright)$. For being sure check $displaystyle lim_{ntoinfty}n:lgleft(1-dfrac1nright)$.
    – Yadati Kiran
    Nov 25 '18 at 10:49
















0












0








0







I'm having trouble proving that:



For any constant $epsilon > 0$ and $n > 1$:



$$
left(1-frac{1}{n}right)^{n lgleft(n^{epsilon}right)} leq frac{1}{n^{epsilon}}$$



I'm using $lg(n)$ as $log_2(n)$. Any help is appreciated, hints for critical points of the proof are welcome as well.










share|cite|improve this question















I'm having trouble proving that:



For any constant $epsilon > 0$ and $n > 1$:



$$
left(1-frac{1}{n}right)^{n lgleft(n^{epsilon}right)} leq frac{1}{n^{epsilon}}$$



I'm using $lg(n)$ as $log_2(n)$. Any help is appreciated, hints for critical points of the proof are welcome as well.







calculus inequality upper-lower-bounds






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 25 '18 at 9:57

























asked Nov 25 '18 at 9:47









figure09

11




11












  • Take $log_2$ on both sides. $implies n:lg(n^{varepsilon}):lgleft(1+dfrac1nright)leq-lg(n^{varepsilon})$.
    – Yadati Kiran
    Nov 25 '18 at 9:56












  • Observe $left(1+dfrac1nright)<2:forall:n>1implies lgleft(1+dfrac1nright)<0.$
    – Yadati Kiran
    Nov 25 '18 at 10:01












  • Thank you, sir!
    – figure09
    Nov 25 '18 at 10:21










  • $left(1-dfrac1nright)$ and not $left(1+dfrac1nright)$. For being sure check $displaystyle lim_{ntoinfty}n:lgleft(1-dfrac1nright)$.
    – Yadati Kiran
    Nov 25 '18 at 10:49




















  • Take $log_2$ on both sides. $implies n:lg(n^{varepsilon}):lgleft(1+dfrac1nright)leq-lg(n^{varepsilon})$.
    – Yadati Kiran
    Nov 25 '18 at 9:56












  • Observe $left(1+dfrac1nright)<2:forall:n>1implies lgleft(1+dfrac1nright)<0.$
    – Yadati Kiran
    Nov 25 '18 at 10:01












  • Thank you, sir!
    – figure09
    Nov 25 '18 at 10:21










  • $left(1-dfrac1nright)$ and not $left(1+dfrac1nright)$. For being sure check $displaystyle lim_{ntoinfty}n:lgleft(1-dfrac1nright)$.
    – Yadati Kiran
    Nov 25 '18 at 10:49


















Take $log_2$ on both sides. $implies n:lg(n^{varepsilon}):lgleft(1+dfrac1nright)leq-lg(n^{varepsilon})$.
– Yadati Kiran
Nov 25 '18 at 9:56






Take $log_2$ on both sides. $implies n:lg(n^{varepsilon}):lgleft(1+dfrac1nright)leq-lg(n^{varepsilon})$.
– Yadati Kiran
Nov 25 '18 at 9:56














Observe $left(1+dfrac1nright)<2:forall:n>1implies lgleft(1+dfrac1nright)<0.$
– Yadati Kiran
Nov 25 '18 at 10:01






Observe $left(1+dfrac1nright)<2:forall:n>1implies lgleft(1+dfrac1nright)<0.$
– Yadati Kiran
Nov 25 '18 at 10:01














Thank you, sir!
– figure09
Nov 25 '18 at 10:21




Thank you, sir!
– figure09
Nov 25 '18 at 10:21












$left(1-dfrac1nright)$ and not $left(1+dfrac1nright)$. For being sure check $displaystyle lim_{ntoinfty}n:lgleft(1-dfrac1nright)$.
– Yadati Kiran
Nov 25 '18 at 10:49






$left(1-dfrac1nright)$ and not $left(1+dfrac1nright)$. For being sure check $displaystyle lim_{ntoinfty}n:lgleft(1-dfrac1nright)$.
– Yadati Kiran
Nov 25 '18 at 10:49












1 Answer
1






active

oldest

votes


















1














Hint :



The $ln$ function is strictly increasing and defined for numbers $>0$. Since these hold in your expression, it is :



$$bigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq frac{1}{n^epsilon} Rightarrow lnbigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq lnbigg(frac{1}{n^epsilon}bigg)$$



$$Leftrightarrow$$



$$ncdot epsilon ln n cdot lnbigg(1-frac{1}{n}bigg)leq -epsilonln n$$



$$Leftrightarrow$$



$$bigg[nlnbigg(1-frac{1}{n}bigg)-1bigg]epsilonln n leq 0$$






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012637%2fbound-for-1-frac1nt%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    Hint :



    The $ln$ function is strictly increasing and defined for numbers $>0$. Since these hold in your expression, it is :



    $$bigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq frac{1}{n^epsilon} Rightarrow lnbigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq lnbigg(frac{1}{n^epsilon}bigg)$$



    $$Leftrightarrow$$



    $$ncdot epsilon ln n cdot lnbigg(1-frac{1}{n}bigg)leq -epsilonln n$$



    $$Leftrightarrow$$



    $$bigg[nlnbigg(1-frac{1}{n}bigg)-1bigg]epsilonln n leq 0$$






    share|cite|improve this answer


























      1














      Hint :



      The $ln$ function is strictly increasing and defined for numbers $>0$. Since these hold in your expression, it is :



      $$bigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq frac{1}{n^epsilon} Rightarrow lnbigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq lnbigg(frac{1}{n^epsilon}bigg)$$



      $$Leftrightarrow$$



      $$ncdot epsilon ln n cdot lnbigg(1-frac{1}{n}bigg)leq -epsilonln n$$



      $$Leftrightarrow$$



      $$bigg[nlnbigg(1-frac{1}{n}bigg)-1bigg]epsilonln n leq 0$$






      share|cite|improve this answer
























        1












        1








        1






        Hint :



        The $ln$ function is strictly increasing and defined for numbers $>0$. Since these hold in your expression, it is :



        $$bigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq frac{1}{n^epsilon} Rightarrow lnbigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq lnbigg(frac{1}{n^epsilon}bigg)$$



        $$Leftrightarrow$$



        $$ncdot epsilon ln n cdot lnbigg(1-frac{1}{n}bigg)leq -epsilonln n$$



        $$Leftrightarrow$$



        $$bigg[nlnbigg(1-frac{1}{n}bigg)-1bigg]epsilonln n leq 0$$






        share|cite|improve this answer












        Hint :



        The $ln$ function is strictly increasing and defined for numbers $>0$. Since these hold in your expression, it is :



        $$bigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq frac{1}{n^epsilon} Rightarrow lnbigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq lnbigg(frac{1}{n^epsilon}bigg)$$



        $$Leftrightarrow$$



        $$ncdot epsilon ln n cdot lnbigg(1-frac{1}{n}bigg)leq -epsilonln n$$



        $$Leftrightarrow$$



        $$bigg[nlnbigg(1-frac{1}{n}bigg)-1bigg]epsilonln n leq 0$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 25 '18 at 10:42









        Rebellos

        14.4k31245




        14.4k31245






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012637%2fbound-for-1-frac1nt%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa