Bound for $(1-frac{1}{n})^t$
I'm having trouble proving that:
For any constant $epsilon > 0$ and $n > 1$:
$$
left(1-frac{1}{n}right)^{n lgleft(n^{epsilon}right)} leq frac{1}{n^{epsilon}}$$
I'm using $lg(n)$ as $log_2(n)$. Any help is appreciated, hints for critical points of the proof are welcome as well.
calculus inequality upper-lower-bounds
add a comment |
I'm having trouble proving that:
For any constant $epsilon > 0$ and $n > 1$:
$$
left(1-frac{1}{n}right)^{n lgleft(n^{epsilon}right)} leq frac{1}{n^{epsilon}}$$
I'm using $lg(n)$ as $log_2(n)$. Any help is appreciated, hints for critical points of the proof are welcome as well.
calculus inequality upper-lower-bounds
Take $log_2$ on both sides. $implies n:lg(n^{varepsilon}):lgleft(1+dfrac1nright)leq-lg(n^{varepsilon})$.
– Yadati Kiran
Nov 25 '18 at 9:56
Observe $left(1+dfrac1nright)<2:forall:n>1implies lgleft(1+dfrac1nright)<0.$
– Yadati Kiran
Nov 25 '18 at 10:01
Thank you, sir!
– figure09
Nov 25 '18 at 10:21
$left(1-dfrac1nright)$ and not $left(1+dfrac1nright)$. For being sure check $displaystyle lim_{ntoinfty}n:lgleft(1-dfrac1nright)$.
– Yadati Kiran
Nov 25 '18 at 10:49
add a comment |
I'm having trouble proving that:
For any constant $epsilon > 0$ and $n > 1$:
$$
left(1-frac{1}{n}right)^{n lgleft(n^{epsilon}right)} leq frac{1}{n^{epsilon}}$$
I'm using $lg(n)$ as $log_2(n)$. Any help is appreciated, hints for critical points of the proof are welcome as well.
calculus inequality upper-lower-bounds
I'm having trouble proving that:
For any constant $epsilon > 0$ and $n > 1$:
$$
left(1-frac{1}{n}right)^{n lgleft(n^{epsilon}right)} leq frac{1}{n^{epsilon}}$$
I'm using $lg(n)$ as $log_2(n)$. Any help is appreciated, hints for critical points of the proof are welcome as well.
calculus inequality upper-lower-bounds
calculus inequality upper-lower-bounds
edited Nov 25 '18 at 9:57
asked Nov 25 '18 at 9:47
figure09
11
11
Take $log_2$ on both sides. $implies n:lg(n^{varepsilon}):lgleft(1+dfrac1nright)leq-lg(n^{varepsilon})$.
– Yadati Kiran
Nov 25 '18 at 9:56
Observe $left(1+dfrac1nright)<2:forall:n>1implies lgleft(1+dfrac1nright)<0.$
– Yadati Kiran
Nov 25 '18 at 10:01
Thank you, sir!
– figure09
Nov 25 '18 at 10:21
$left(1-dfrac1nright)$ and not $left(1+dfrac1nright)$. For being sure check $displaystyle lim_{ntoinfty}n:lgleft(1-dfrac1nright)$.
– Yadati Kiran
Nov 25 '18 at 10:49
add a comment |
Take $log_2$ on both sides. $implies n:lg(n^{varepsilon}):lgleft(1+dfrac1nright)leq-lg(n^{varepsilon})$.
– Yadati Kiran
Nov 25 '18 at 9:56
Observe $left(1+dfrac1nright)<2:forall:n>1implies lgleft(1+dfrac1nright)<0.$
– Yadati Kiran
Nov 25 '18 at 10:01
Thank you, sir!
– figure09
Nov 25 '18 at 10:21
$left(1-dfrac1nright)$ and not $left(1+dfrac1nright)$. For being sure check $displaystyle lim_{ntoinfty}n:lgleft(1-dfrac1nright)$.
– Yadati Kiran
Nov 25 '18 at 10:49
Take $log_2$ on both sides. $implies n:lg(n^{varepsilon}):lgleft(1+dfrac1nright)leq-lg(n^{varepsilon})$.
– Yadati Kiran
Nov 25 '18 at 9:56
Take $log_2$ on both sides. $implies n:lg(n^{varepsilon}):lgleft(1+dfrac1nright)leq-lg(n^{varepsilon})$.
– Yadati Kiran
Nov 25 '18 at 9:56
Observe $left(1+dfrac1nright)<2:forall:n>1implies lgleft(1+dfrac1nright)<0.$
– Yadati Kiran
Nov 25 '18 at 10:01
Observe $left(1+dfrac1nright)<2:forall:n>1implies lgleft(1+dfrac1nright)<0.$
– Yadati Kiran
Nov 25 '18 at 10:01
Thank you, sir!
– figure09
Nov 25 '18 at 10:21
Thank you, sir!
– figure09
Nov 25 '18 at 10:21
$left(1-dfrac1nright)$ and not $left(1+dfrac1nright)$. For being sure check $displaystyle lim_{ntoinfty}n:lgleft(1-dfrac1nright)$.
– Yadati Kiran
Nov 25 '18 at 10:49
$left(1-dfrac1nright)$ and not $left(1+dfrac1nright)$. For being sure check $displaystyle lim_{ntoinfty}n:lgleft(1-dfrac1nright)$.
– Yadati Kiran
Nov 25 '18 at 10:49
add a comment |
1 Answer
1
active
oldest
votes
Hint :
The $ln$ function is strictly increasing and defined for numbers $>0$. Since these hold in your expression, it is :
$$bigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq frac{1}{n^epsilon} Rightarrow lnbigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq lnbigg(frac{1}{n^epsilon}bigg)$$
$$Leftrightarrow$$
$$ncdot epsilon ln n cdot lnbigg(1-frac{1}{n}bigg)leq -epsilonln n$$
$$Leftrightarrow$$
$$bigg[nlnbigg(1-frac{1}{n}bigg)-1bigg]epsilonln n leq 0$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012637%2fbound-for-1-frac1nt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint :
The $ln$ function is strictly increasing and defined for numbers $>0$. Since these hold in your expression, it is :
$$bigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq frac{1}{n^epsilon} Rightarrow lnbigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq lnbigg(frac{1}{n^epsilon}bigg)$$
$$Leftrightarrow$$
$$ncdot epsilon ln n cdot lnbigg(1-frac{1}{n}bigg)leq -epsilonln n$$
$$Leftrightarrow$$
$$bigg[nlnbigg(1-frac{1}{n}bigg)-1bigg]epsilonln n leq 0$$
add a comment |
Hint :
The $ln$ function is strictly increasing and defined for numbers $>0$. Since these hold in your expression, it is :
$$bigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq frac{1}{n^epsilon} Rightarrow lnbigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq lnbigg(frac{1}{n^epsilon}bigg)$$
$$Leftrightarrow$$
$$ncdot epsilon ln n cdot lnbigg(1-frac{1}{n}bigg)leq -epsilonln n$$
$$Leftrightarrow$$
$$bigg[nlnbigg(1-frac{1}{n}bigg)-1bigg]epsilonln n leq 0$$
add a comment |
Hint :
The $ln$ function is strictly increasing and defined for numbers $>0$. Since these hold in your expression, it is :
$$bigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq frac{1}{n^epsilon} Rightarrow lnbigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq lnbigg(frac{1}{n^epsilon}bigg)$$
$$Leftrightarrow$$
$$ncdot epsilon ln n cdot lnbigg(1-frac{1}{n}bigg)leq -epsilonln n$$
$$Leftrightarrow$$
$$bigg[nlnbigg(1-frac{1}{n}bigg)-1bigg]epsilonln n leq 0$$
Hint :
The $ln$ function is strictly increasing and defined for numbers $>0$. Since these hold in your expression, it is :
$$bigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq frac{1}{n^epsilon} Rightarrow lnbigg(1-frac{1}{n}bigg)^{nln{n^epsilon}} leq lnbigg(frac{1}{n^epsilon}bigg)$$
$$Leftrightarrow$$
$$ncdot epsilon ln n cdot lnbigg(1-frac{1}{n}bigg)leq -epsilonln n$$
$$Leftrightarrow$$
$$bigg[nlnbigg(1-frac{1}{n}bigg)-1bigg]epsilonln n leq 0$$
answered Nov 25 '18 at 10:42
Rebellos
14.4k31245
14.4k31245
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012637%2fbound-for-1-frac1nt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Take $log_2$ on both sides. $implies n:lg(n^{varepsilon}):lgleft(1+dfrac1nright)leq-lg(n^{varepsilon})$.
– Yadati Kiran
Nov 25 '18 at 9:56
Observe $left(1+dfrac1nright)<2:forall:n>1implies lgleft(1+dfrac1nright)<0.$
– Yadati Kiran
Nov 25 '18 at 10:01
Thank you, sir!
– figure09
Nov 25 '18 at 10:21
$left(1-dfrac1nright)$ and not $left(1+dfrac1nright)$. For being sure check $displaystyle lim_{ntoinfty}n:lgleft(1-dfrac1nright)$.
– Yadati Kiran
Nov 25 '18 at 10:49