Limit $lim_{ttoinfty}int_{[1,+infty)}e^{-tx}frac{sin x}{x} dlambda(x)$












0














$f(t)=int_{[1,+infty)}e^{-tx}frac{sin x}{x} dlambda(x)$. $tin [1,+infty)$




How can I argue that $lim_{ttoinfty}f(t)=int_{[1,+infty)}lim_{ttoinfty}e^{-tx}frac{sin x}{x} dlambda(x)$? (switching limit and integral)




I know that $|e^{-tx}frac{sin x}{x}|le e^{-x}$ for $tge1$ and $int_1^infty e^{-x}<infty$ so I thought about using dominated convergence theorem dct
but what is my sequence $f_n$ in this case?










share|cite|improve this question
























  • In the notation of wikipedia we have $g=e^{-x},f=e^{-tx}frac{sin x}{x}$ but what is my $f_n$?
    – conrad
    Nov 25 '18 at 10:56










  • Not sure I fully understand where the problem is... You know that, for every $x$, $$left|frac{sin x}{x}right|leqslant 1$$ hence $$|f(t)|leqslantint_1^inftyleft|e^{-tx}frac{sin x}{x}right|dxleqslantint_1^infty e^{-tx}dxleqslantint_0^infty e^{-tx}dx=frac1tto0$$
    – Did
    Nov 25 '18 at 12:05


















0














$f(t)=int_{[1,+infty)}e^{-tx}frac{sin x}{x} dlambda(x)$. $tin [1,+infty)$




How can I argue that $lim_{ttoinfty}f(t)=int_{[1,+infty)}lim_{ttoinfty}e^{-tx}frac{sin x}{x} dlambda(x)$? (switching limit and integral)




I know that $|e^{-tx}frac{sin x}{x}|le e^{-x}$ for $tge1$ and $int_1^infty e^{-x}<infty$ so I thought about using dominated convergence theorem dct
but what is my sequence $f_n$ in this case?










share|cite|improve this question
























  • In the notation of wikipedia we have $g=e^{-x},f=e^{-tx}frac{sin x}{x}$ but what is my $f_n$?
    – conrad
    Nov 25 '18 at 10:56










  • Not sure I fully understand where the problem is... You know that, for every $x$, $$left|frac{sin x}{x}right|leqslant 1$$ hence $$|f(t)|leqslantint_1^inftyleft|e^{-tx}frac{sin x}{x}right|dxleqslantint_1^infty e^{-tx}dxleqslantint_0^infty e^{-tx}dx=frac1tto0$$
    – Did
    Nov 25 '18 at 12:05
















0












0








0







$f(t)=int_{[1,+infty)}e^{-tx}frac{sin x}{x} dlambda(x)$. $tin [1,+infty)$




How can I argue that $lim_{ttoinfty}f(t)=int_{[1,+infty)}lim_{ttoinfty}e^{-tx}frac{sin x}{x} dlambda(x)$? (switching limit and integral)




I know that $|e^{-tx}frac{sin x}{x}|le e^{-x}$ for $tge1$ and $int_1^infty e^{-x}<infty$ so I thought about using dominated convergence theorem dct
but what is my sequence $f_n$ in this case?










share|cite|improve this question















$f(t)=int_{[1,+infty)}e^{-tx}frac{sin x}{x} dlambda(x)$. $tin [1,+infty)$




How can I argue that $lim_{ttoinfty}f(t)=int_{[1,+infty)}lim_{ttoinfty}e^{-tx}frac{sin x}{x} dlambda(x)$? (switching limit and integral)




I know that $|e^{-tx}frac{sin x}{x}|le e^{-x}$ for $tge1$ and $int_1^infty e^{-x}<infty$ so I thought about using dominated convergence theorem dct
but what is my sequence $f_n$ in this case?







real-analysis integration analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 25 '18 at 12:18









Martin Sleziak

44.7k7115270




44.7k7115270










asked Nov 25 '18 at 10:40









conrad

757




757












  • In the notation of wikipedia we have $g=e^{-x},f=e^{-tx}frac{sin x}{x}$ but what is my $f_n$?
    – conrad
    Nov 25 '18 at 10:56










  • Not sure I fully understand where the problem is... You know that, for every $x$, $$left|frac{sin x}{x}right|leqslant 1$$ hence $$|f(t)|leqslantint_1^inftyleft|e^{-tx}frac{sin x}{x}right|dxleqslantint_1^infty e^{-tx}dxleqslantint_0^infty e^{-tx}dx=frac1tto0$$
    – Did
    Nov 25 '18 at 12:05




















  • In the notation of wikipedia we have $g=e^{-x},f=e^{-tx}frac{sin x}{x}$ but what is my $f_n$?
    – conrad
    Nov 25 '18 at 10:56










  • Not sure I fully understand where the problem is... You know that, for every $x$, $$left|frac{sin x}{x}right|leqslant 1$$ hence $$|f(t)|leqslantint_1^inftyleft|e^{-tx}frac{sin x}{x}right|dxleqslantint_1^infty e^{-tx}dxleqslantint_0^infty e^{-tx}dx=frac1tto0$$
    – Did
    Nov 25 '18 at 12:05


















In the notation of wikipedia we have $g=e^{-x},f=e^{-tx}frac{sin x}{x}$ but what is my $f_n$?
– conrad
Nov 25 '18 at 10:56




In the notation of wikipedia we have $g=e^{-x},f=e^{-tx}frac{sin x}{x}$ but what is my $f_n$?
– conrad
Nov 25 '18 at 10:56












Not sure I fully understand where the problem is... You know that, for every $x$, $$left|frac{sin x}{x}right|leqslant 1$$ hence $$|f(t)|leqslantint_1^inftyleft|e^{-tx}frac{sin x}{x}right|dxleqslantint_1^infty e^{-tx}dxleqslantint_0^infty e^{-tx}dx=frac1tto0$$
– Did
Nov 25 '18 at 12:05






Not sure I fully understand where the problem is... You know that, for every $x$, $$left|frac{sin x}{x}right|leqslant 1$$ hence $$|f(t)|leqslantint_1^inftyleft|e^{-tx}frac{sin x}{x}right|dxleqslantint_1^infty e^{-tx}dxleqslantint_0^infty e^{-tx}dx=frac1tto0$$
– Did
Nov 25 '18 at 12:05












1 Answer
1






active

oldest

votes


















0














Theorem:




A functional limit $lim_{xto a}f(x)$ converges to some limit $L$ if and only if for every sequence ${x_n}_{ninBbb N}$ such that $x_nneq a$ for all $ninBbb N$ and that converges to $a$ the sequence ${f(x_n)}_{ninBbb N}$ converges to $L$.




Hence



$$lim_{ttoinfty}int_X f(x,t), dx=Liff lim_{ntoinfty}int_X f(x,t_n), dx=Ltag1$$



for every sequence ${t_n}_{ninBbb N}$ that converges to infinity. If we set $f_n(x):=f(x,t_n)$ then we have the equivalent expression



$$lim_{ttoinfty}int_X f(x,t), dx=Lifflim_{ntoinfty}int_X f_n(x), dx=Ltag2$$



for every sequence ${t_n}_{ninBbb N}toinfty$. Now using the dominated convergence theorem it is easy to check that the RHS of $(2)$ converges to $L=0$ for any chosen sequence ${t_n}_{ninBbb N}toinfty$.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012675%2flimit-lim-t-to-infty-int-1-inftye-tx-frac-sin-xx-d-lambdax%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    Theorem:




    A functional limit $lim_{xto a}f(x)$ converges to some limit $L$ if and only if for every sequence ${x_n}_{ninBbb N}$ such that $x_nneq a$ for all $ninBbb N$ and that converges to $a$ the sequence ${f(x_n)}_{ninBbb N}$ converges to $L$.




    Hence



    $$lim_{ttoinfty}int_X f(x,t), dx=Liff lim_{ntoinfty}int_X f(x,t_n), dx=Ltag1$$



    for every sequence ${t_n}_{ninBbb N}$ that converges to infinity. If we set $f_n(x):=f(x,t_n)$ then we have the equivalent expression



    $$lim_{ttoinfty}int_X f(x,t), dx=Lifflim_{ntoinfty}int_X f_n(x), dx=Ltag2$$



    for every sequence ${t_n}_{ninBbb N}toinfty$. Now using the dominated convergence theorem it is easy to check that the RHS of $(2)$ converges to $L=0$ for any chosen sequence ${t_n}_{ninBbb N}toinfty$.






    share|cite|improve this answer




























      0














      Theorem:




      A functional limit $lim_{xto a}f(x)$ converges to some limit $L$ if and only if for every sequence ${x_n}_{ninBbb N}$ such that $x_nneq a$ for all $ninBbb N$ and that converges to $a$ the sequence ${f(x_n)}_{ninBbb N}$ converges to $L$.




      Hence



      $$lim_{ttoinfty}int_X f(x,t), dx=Liff lim_{ntoinfty}int_X f(x,t_n), dx=Ltag1$$



      for every sequence ${t_n}_{ninBbb N}$ that converges to infinity. If we set $f_n(x):=f(x,t_n)$ then we have the equivalent expression



      $$lim_{ttoinfty}int_X f(x,t), dx=Lifflim_{ntoinfty}int_X f_n(x), dx=Ltag2$$



      for every sequence ${t_n}_{ninBbb N}toinfty$. Now using the dominated convergence theorem it is easy to check that the RHS of $(2)$ converges to $L=0$ for any chosen sequence ${t_n}_{ninBbb N}toinfty$.






      share|cite|improve this answer


























        0












        0








        0






        Theorem:




        A functional limit $lim_{xto a}f(x)$ converges to some limit $L$ if and only if for every sequence ${x_n}_{ninBbb N}$ such that $x_nneq a$ for all $ninBbb N$ and that converges to $a$ the sequence ${f(x_n)}_{ninBbb N}$ converges to $L$.




        Hence



        $$lim_{ttoinfty}int_X f(x,t), dx=Liff lim_{ntoinfty}int_X f(x,t_n), dx=Ltag1$$



        for every sequence ${t_n}_{ninBbb N}$ that converges to infinity. If we set $f_n(x):=f(x,t_n)$ then we have the equivalent expression



        $$lim_{ttoinfty}int_X f(x,t), dx=Lifflim_{ntoinfty}int_X f_n(x), dx=Ltag2$$



        for every sequence ${t_n}_{ninBbb N}toinfty$. Now using the dominated convergence theorem it is easy to check that the RHS of $(2)$ converges to $L=0$ for any chosen sequence ${t_n}_{ninBbb N}toinfty$.






        share|cite|improve this answer














        Theorem:




        A functional limit $lim_{xto a}f(x)$ converges to some limit $L$ if and only if for every sequence ${x_n}_{ninBbb N}$ such that $x_nneq a$ for all $ninBbb N$ and that converges to $a$ the sequence ${f(x_n)}_{ninBbb N}$ converges to $L$.




        Hence



        $$lim_{ttoinfty}int_X f(x,t), dx=Liff lim_{ntoinfty}int_X f(x,t_n), dx=Ltag1$$



        for every sequence ${t_n}_{ninBbb N}$ that converges to infinity. If we set $f_n(x):=f(x,t_n)$ then we have the equivalent expression



        $$lim_{ttoinfty}int_X f(x,t), dx=Lifflim_{ntoinfty}int_X f_n(x), dx=Ltag2$$



        for every sequence ${t_n}_{ninBbb N}toinfty$. Now using the dominated convergence theorem it is easy to check that the RHS of $(2)$ converges to $L=0$ for any chosen sequence ${t_n}_{ninBbb N}toinfty$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 25 '18 at 12:16

























        answered Nov 25 '18 at 12:01









        Masacroso

        12.9k41746




        12.9k41746






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012675%2flimit-lim-t-to-infty-int-1-inftye-tx-frac-sin-xx-d-lambdax%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa