Show that the sequence $a_n = (1 + frac{1}{n})^n$ is bounded. [duplicate]












-2















This question already has an answer here:




  • Proving $mathrm e <3$

    7 answers




Show that the sequence $$a_n = bigg(1 + frac{1}{n}bigg)^n$$ is bounded.










share|cite|improve this question















marked as duplicate by José Carlos Santos, Yanko, egreg real-analysis
Users with the  real-analysis badge can single-handedly close real-analysis questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 25 '18 at 10:51


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.











  • 3




    Hi, I edited your question format a bit. Welcome to MSE. Please, in future, use Math-Jax to formulate your questions ! Moreover, do you have any thoughts on the given problem ? Do you know the number $e$ ? Maybe you can see a pattern ?
    – Rebellos
    Nov 25 '18 at 10:22












  • Prove by induction it is bounded above by 3. For n=1 the result is evident. Next, notice a(n+1)= (n+2)^(n+1)/(n+1)^(n+1)... can you continue?
    – Neymar
    Nov 25 '18 at 10:30
















-2















This question already has an answer here:




  • Proving $mathrm e <3$

    7 answers




Show that the sequence $$a_n = bigg(1 + frac{1}{n}bigg)^n$$ is bounded.










share|cite|improve this question















marked as duplicate by José Carlos Santos, Yanko, egreg real-analysis
Users with the  real-analysis badge can single-handedly close real-analysis questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 25 '18 at 10:51


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.











  • 3




    Hi, I edited your question format a bit. Welcome to MSE. Please, in future, use Math-Jax to formulate your questions ! Moreover, do you have any thoughts on the given problem ? Do you know the number $e$ ? Maybe you can see a pattern ?
    – Rebellos
    Nov 25 '18 at 10:22












  • Prove by induction it is bounded above by 3. For n=1 the result is evident. Next, notice a(n+1)= (n+2)^(n+1)/(n+1)^(n+1)... can you continue?
    – Neymar
    Nov 25 '18 at 10:30














-2












-2








-2








This question already has an answer here:




  • Proving $mathrm e <3$

    7 answers




Show that the sequence $$a_n = bigg(1 + frac{1}{n}bigg)^n$$ is bounded.










share|cite|improve this question
















This question already has an answer here:




  • Proving $mathrm e <3$

    7 answers




Show that the sequence $$a_n = bigg(1 + frac{1}{n}bigg)^n$$ is bounded.





This question already has an answer here:




  • Proving $mathrm e <3$

    7 answers








real-analysis sequences-and-series convergence upper-lower-bounds






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 25 '18 at 10:21









Rebellos

14.4k31245




14.4k31245










asked Nov 25 '18 at 10:15









user619263

203




203




marked as duplicate by José Carlos Santos, Yanko, egreg real-analysis
Users with the  real-analysis badge can single-handedly close real-analysis questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 25 '18 at 10:51


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






marked as duplicate by José Carlos Santos, Yanko, egreg real-analysis
Users with the  real-analysis badge can single-handedly close real-analysis questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 25 '18 at 10:51


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 3




    Hi, I edited your question format a bit. Welcome to MSE. Please, in future, use Math-Jax to formulate your questions ! Moreover, do you have any thoughts on the given problem ? Do you know the number $e$ ? Maybe you can see a pattern ?
    – Rebellos
    Nov 25 '18 at 10:22












  • Prove by induction it is bounded above by 3. For n=1 the result is evident. Next, notice a(n+1)= (n+2)^(n+1)/(n+1)^(n+1)... can you continue?
    – Neymar
    Nov 25 '18 at 10:30














  • 3




    Hi, I edited your question format a bit. Welcome to MSE. Please, in future, use Math-Jax to formulate your questions ! Moreover, do you have any thoughts on the given problem ? Do you know the number $e$ ? Maybe you can see a pattern ?
    – Rebellos
    Nov 25 '18 at 10:22












  • Prove by induction it is bounded above by 3. For n=1 the result is evident. Next, notice a(n+1)= (n+2)^(n+1)/(n+1)^(n+1)... can you continue?
    – Neymar
    Nov 25 '18 at 10:30








3




3




Hi, I edited your question format a bit. Welcome to MSE. Please, in future, use Math-Jax to formulate your questions ! Moreover, do you have any thoughts on the given problem ? Do you know the number $e$ ? Maybe you can see a pattern ?
– Rebellos
Nov 25 '18 at 10:22






Hi, I edited your question format a bit. Welcome to MSE. Please, in future, use Math-Jax to formulate your questions ! Moreover, do you have any thoughts on the given problem ? Do you know the number $e$ ? Maybe you can see a pattern ?
– Rebellos
Nov 25 '18 at 10:22














Prove by induction it is bounded above by 3. For n=1 the result is evident. Next, notice a(n+1)= (n+2)^(n+1)/(n+1)^(n+1)... can you continue?
– Neymar
Nov 25 '18 at 10:30




Prove by induction it is bounded above by 3. For n=1 the result is evident. Next, notice a(n+1)= (n+2)^(n+1)/(n+1)^(n+1)... can you continue?
– Neymar
Nov 25 '18 at 10:30










2 Answers
2






active

oldest

votes


















0














Using the inequality
$$
(1+a)^nge 1+na, quad ninmathbb N, ,,age-1,
$$

and the binomial theorem
we obtain
$$
2=1+ncdotfrac{1}{n}leleft(1+frac{1}{n}right)^n=sum_{k=0}^nbinom{n}{k}frac{1}{n^k}=sum_{k=0}^nfrac{n!}{k!(n-k)!n^k}=sum_{k=0}^nfrac{n(n-1)cdots(n-k+1)}{k!n^k}\
le
sum_{k=0}^nfrac{1}{k!}=frac{1}{0!}+frac{1}{1!}+frac{1}{2!}+frac{1}{3!}+cdots+frac{1}{n!}le 2+frac{1}{2}+frac{1}{2^2}+cdots+frac{1}{2^{n-1}}<3.
$$






share|cite|improve this answer





























    0














    Hints:



    $$bigg(1 + frac{1}{n}bigg)^n = {nchoose 0}+{n choose 1}bigg(frac{1}{n}bigg)+{n choose 2}bigg(frac{1}{n}bigg)^2+{n choose 3}bigg(frac{1}{n}bigg)^3+... tag{1}$$



    $$frac{1}{2!}+frac{1}{3!}+frac{1}{4!}+...<frac{1}{2}+frac{1}{4}+frac{1}{8}+...tag{2}$$



    Try simplifying $(1)$ and letting $n to infty$. See whether it converges to a certain value. You can show whether the series is bounded by using hint $(2)$. (The result should be familiar...)






    share|cite|improve this answer




























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0














      Using the inequality
      $$
      (1+a)^nge 1+na, quad ninmathbb N, ,,age-1,
      $$

      and the binomial theorem
      we obtain
      $$
      2=1+ncdotfrac{1}{n}leleft(1+frac{1}{n}right)^n=sum_{k=0}^nbinom{n}{k}frac{1}{n^k}=sum_{k=0}^nfrac{n!}{k!(n-k)!n^k}=sum_{k=0}^nfrac{n(n-1)cdots(n-k+1)}{k!n^k}\
      le
      sum_{k=0}^nfrac{1}{k!}=frac{1}{0!}+frac{1}{1!}+frac{1}{2!}+frac{1}{3!}+cdots+frac{1}{n!}le 2+frac{1}{2}+frac{1}{2^2}+cdots+frac{1}{2^{n-1}}<3.
      $$






      share|cite|improve this answer


























        0














        Using the inequality
        $$
        (1+a)^nge 1+na, quad ninmathbb N, ,,age-1,
        $$

        and the binomial theorem
        we obtain
        $$
        2=1+ncdotfrac{1}{n}leleft(1+frac{1}{n}right)^n=sum_{k=0}^nbinom{n}{k}frac{1}{n^k}=sum_{k=0}^nfrac{n!}{k!(n-k)!n^k}=sum_{k=0}^nfrac{n(n-1)cdots(n-k+1)}{k!n^k}\
        le
        sum_{k=0}^nfrac{1}{k!}=frac{1}{0!}+frac{1}{1!}+frac{1}{2!}+frac{1}{3!}+cdots+frac{1}{n!}le 2+frac{1}{2}+frac{1}{2^2}+cdots+frac{1}{2^{n-1}}<3.
        $$






        share|cite|improve this answer
























          0












          0








          0






          Using the inequality
          $$
          (1+a)^nge 1+na, quad ninmathbb N, ,,age-1,
          $$

          and the binomial theorem
          we obtain
          $$
          2=1+ncdotfrac{1}{n}leleft(1+frac{1}{n}right)^n=sum_{k=0}^nbinom{n}{k}frac{1}{n^k}=sum_{k=0}^nfrac{n!}{k!(n-k)!n^k}=sum_{k=0}^nfrac{n(n-1)cdots(n-k+1)}{k!n^k}\
          le
          sum_{k=0}^nfrac{1}{k!}=frac{1}{0!}+frac{1}{1!}+frac{1}{2!}+frac{1}{3!}+cdots+frac{1}{n!}le 2+frac{1}{2}+frac{1}{2^2}+cdots+frac{1}{2^{n-1}}<3.
          $$






          share|cite|improve this answer












          Using the inequality
          $$
          (1+a)^nge 1+na, quad ninmathbb N, ,,age-1,
          $$

          and the binomial theorem
          we obtain
          $$
          2=1+ncdotfrac{1}{n}leleft(1+frac{1}{n}right)^n=sum_{k=0}^nbinom{n}{k}frac{1}{n^k}=sum_{k=0}^nfrac{n!}{k!(n-k)!n^k}=sum_{k=0}^nfrac{n(n-1)cdots(n-k+1)}{k!n^k}\
          le
          sum_{k=0}^nfrac{1}{k!}=frac{1}{0!}+frac{1}{1!}+frac{1}{2!}+frac{1}{3!}+cdots+frac{1}{n!}le 2+frac{1}{2}+frac{1}{2^2}+cdots+frac{1}{2^{n-1}}<3.
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 25 '18 at 10:47









          Yiorgos S. Smyrlis

          62.5k1383162




          62.5k1383162























              0














              Hints:



              $$bigg(1 + frac{1}{n}bigg)^n = {nchoose 0}+{n choose 1}bigg(frac{1}{n}bigg)+{n choose 2}bigg(frac{1}{n}bigg)^2+{n choose 3}bigg(frac{1}{n}bigg)^3+... tag{1}$$



              $$frac{1}{2!}+frac{1}{3!}+frac{1}{4!}+...<frac{1}{2}+frac{1}{4}+frac{1}{8}+...tag{2}$$



              Try simplifying $(1)$ and letting $n to infty$. See whether it converges to a certain value. You can show whether the series is bounded by using hint $(2)$. (The result should be familiar...)






              share|cite|improve this answer


























                0














                Hints:



                $$bigg(1 + frac{1}{n}bigg)^n = {nchoose 0}+{n choose 1}bigg(frac{1}{n}bigg)+{n choose 2}bigg(frac{1}{n}bigg)^2+{n choose 3}bigg(frac{1}{n}bigg)^3+... tag{1}$$



                $$frac{1}{2!}+frac{1}{3!}+frac{1}{4!}+...<frac{1}{2}+frac{1}{4}+frac{1}{8}+...tag{2}$$



                Try simplifying $(1)$ and letting $n to infty$. See whether it converges to a certain value. You can show whether the series is bounded by using hint $(2)$. (The result should be familiar...)






                share|cite|improve this answer
























                  0












                  0








                  0






                  Hints:



                  $$bigg(1 + frac{1}{n}bigg)^n = {nchoose 0}+{n choose 1}bigg(frac{1}{n}bigg)+{n choose 2}bigg(frac{1}{n}bigg)^2+{n choose 3}bigg(frac{1}{n}bigg)^3+... tag{1}$$



                  $$frac{1}{2!}+frac{1}{3!}+frac{1}{4!}+...<frac{1}{2}+frac{1}{4}+frac{1}{8}+...tag{2}$$



                  Try simplifying $(1)$ and letting $n to infty$. See whether it converges to a certain value. You can show whether the series is bounded by using hint $(2)$. (The result should be familiar...)






                  share|cite|improve this answer












                  Hints:



                  $$bigg(1 + frac{1}{n}bigg)^n = {nchoose 0}+{n choose 1}bigg(frac{1}{n}bigg)+{n choose 2}bigg(frac{1}{n}bigg)^2+{n choose 3}bigg(frac{1}{n}bigg)^3+... tag{1}$$



                  $$frac{1}{2!}+frac{1}{3!}+frac{1}{4!}+...<frac{1}{2}+frac{1}{4}+frac{1}{8}+...tag{2}$$



                  Try simplifying $(1)$ and letting $n to infty$. See whether it converges to a certain value. You can show whether the series is bounded by using hint $(2)$. (The result should be familiar...)







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 25 '18 at 10:51









                  KM101

                  4,886421




                  4,886421















                      Popular posts from this blog

                      Plaza Victoria

                      How to extract passwords from Mobaxterm Free Version

                      IC on Digikey is 5x more expensive than board containing same IC on Alibaba: How? [on hold]