Error in expression of incomplete zeta function?











up vote
0
down vote

favorite












Background & Question



I realised I could do a different manipulation from the one I did over here Strange method to obtain strange number theoretic identities? However after making some calculations I seems to be getting the wrong answer by perhaps an extra term.



I got the expression:



$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$



But as $n to infty$ we know the $(frac{1}{zeta(k)})' to 0 $ when $k$ to $1$.



Is the correct answer below?



$$sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} $$



If so where did I go wrong in my proof? And what is the "normal" proof?



Proof



Let us write a relation of the Euler–Mascheroni constant for large $n$.
$$ 1+ frac{1}{2} + frac{1}{3} + frac{1}{4} + dots +frac{1}{n!} sim gamma + ln(n!)$$



Or, multiplying $1/2$ boths sides and let $n! to n!/2$



$$ 0 + frac{1}{2} + 0 + frac{1}{4} + dots +frac{1}{n!} sim frac{gamma}{2} + frac{1}{2}ln(frac{n!}{2})$$



Or, multiplying $1/3$ boths sides and let $n! to n!/3$



$$ 0 + 0 + frac{1}{3} + 0 + dots +frac{1}{n!} sim frac{gamma}{3} + frac{1}{3}ln(frac{n!}{3})$$



And so on $n$ times ... Now multiplying the $r$'th row with $a_r$ and adding vertically (whilst defining $b_r$):



$$ a_1+ frac{a_1}{2} + frac{a_1}{3} + frac{a_1}{4} + dots +frac{a_1}{n!} sim a_1 gamma + a_1 ln(n!)$$



$$ 0 + frac{a_2}{2} + 0 + frac{a_2}{4} + dots +frac{a_2}{n!} sim a_2 frac{gamma}{2} + frac{a_2}{2}ln(frac{n!}{2})$$



$$ 0 + 0 + frac{a_3}{3} + 0 + dots +frac{a_3}{n!} sim a_3 frac{gamma}{3} + frac{a_3}{3}ln(frac{n!}{3})$$



$$vdots $$
$+$
$-----------------------------------$



$$ underbrace{frac{b_1}{1}}_{a_1/1} + underbrace{frac{b_2}{2}}_{(a_1+ a_2)/2} + underbrace{frac{b_3}{3}}_{(a_1+ a_3)/3} + dots sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$



In the above we define:



$$b_r = sum_{r|l} a_l text{ }forall text{ } 1 leq r leq n$$
$$b_r = sum_{(r-n)|l} a_l text{ }forall text{ } n+1 leq r leq 2n$$
$$b_r = sum_{(r-2n)|l} a_l text{ }forall text{ } 2n+1 leq r leq 3n$$
$$ vdots $$
$$b_r = sum_{(r-(n-1)!)|l} a_l text{ }forall text{ } n(n-1)!- n +1 leq r leq n!$$



Writing the above properly now:



$$ sum_{r=1}^n frac{b_r}{r} + sum_{r=n+1}^{2n} frac{b_{r-n}}{r} + dots+ sum_{r=n!-n+1}^{n!} frac{b_{r-n!+n }}{r} sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$



Rearranging the L.H.S and R.H.S:



$$ sum_{r=1}^n sum_{k=0}^{(n-1)! -1 } b_r ( frac{1}{kn+ r}) sim (gamma+ ln n!) sum_{r=1}^n frac{a_r}{r} - sum_{r=1}^n frac{a_r}{r} ln(r) $$



Also note :
$$a_{l}=sum _{dmid l} mu left({frac {l}{d}}right)b_{d} implies frac{partial a_l}{ partial b_d} = mu left({frac {l}{d}}right) $$



where $mu$ is the mobius function. Let us now act $frac{partial }{partial b_d} $ on both sides where $d leq n$:



$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim (gamma+ ln n!) sum_{r=1}^n frac{mu(frac{r}{d})}{r} - sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$



where $mu(lambda)= 0$ where $lambda$ is not an integer. Simplifying some of the terms:



$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$



Let us take $d to 1$



$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ 1}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r) $$



Now using some approximations:



$$ 1 + frac{1}{n} sum_{k=1}^{(n-1)! -1 } frac{1}{k} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$



Using the first equation with a different $n$:



$$ 1 + frac{gamma + ln(n-1)!}{n} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$



$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$










share|cite|improve this question
























  • $sum_{n=1}^infty frac{mu(n)}{n} (-log n)^k$ converges for every $k$ (prime number theorem) and the rate of convergence encodes the zero-free region of $zeta(s)$ (thus the Riemann hypothesis). In particular $sum_{n=1}^N frac{mu(n)}{n} (-log n)^k= frac{d^k}{ds^k} frac{1}{zeta(s)}|_{s=1}+ O(N^{-1+sigma+epsilon})$ iff $zeta(s)$ has no zeros for $Re(s) > sigma$.
    – reuns
    Nov 20 at 1:04












  • @reuns So this is a highly non-trivial statement I'm trying to make?
    – More Anonymous
    Nov 20 at 1:07










  • I'll be editing this post (I caught a foolish error)
    – More Anonymous
    Nov 20 at 2:28















up vote
0
down vote

favorite












Background & Question



I realised I could do a different manipulation from the one I did over here Strange method to obtain strange number theoretic identities? However after making some calculations I seems to be getting the wrong answer by perhaps an extra term.



I got the expression:



$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$



But as $n to infty$ we know the $(frac{1}{zeta(k)})' to 0 $ when $k$ to $1$.



Is the correct answer below?



$$sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} $$



If so where did I go wrong in my proof? And what is the "normal" proof?



Proof



Let us write a relation of the Euler–Mascheroni constant for large $n$.
$$ 1+ frac{1}{2} + frac{1}{3} + frac{1}{4} + dots +frac{1}{n!} sim gamma + ln(n!)$$



Or, multiplying $1/2$ boths sides and let $n! to n!/2$



$$ 0 + frac{1}{2} + 0 + frac{1}{4} + dots +frac{1}{n!} sim frac{gamma}{2} + frac{1}{2}ln(frac{n!}{2})$$



Or, multiplying $1/3$ boths sides and let $n! to n!/3$



$$ 0 + 0 + frac{1}{3} + 0 + dots +frac{1}{n!} sim frac{gamma}{3} + frac{1}{3}ln(frac{n!}{3})$$



And so on $n$ times ... Now multiplying the $r$'th row with $a_r$ and adding vertically (whilst defining $b_r$):



$$ a_1+ frac{a_1}{2} + frac{a_1}{3} + frac{a_1}{4} + dots +frac{a_1}{n!} sim a_1 gamma + a_1 ln(n!)$$



$$ 0 + frac{a_2}{2} + 0 + frac{a_2}{4} + dots +frac{a_2}{n!} sim a_2 frac{gamma}{2} + frac{a_2}{2}ln(frac{n!}{2})$$



$$ 0 + 0 + frac{a_3}{3} + 0 + dots +frac{a_3}{n!} sim a_3 frac{gamma}{3} + frac{a_3}{3}ln(frac{n!}{3})$$



$$vdots $$
$+$
$-----------------------------------$



$$ underbrace{frac{b_1}{1}}_{a_1/1} + underbrace{frac{b_2}{2}}_{(a_1+ a_2)/2} + underbrace{frac{b_3}{3}}_{(a_1+ a_3)/3} + dots sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$



In the above we define:



$$b_r = sum_{r|l} a_l text{ }forall text{ } 1 leq r leq n$$
$$b_r = sum_{(r-n)|l} a_l text{ }forall text{ } n+1 leq r leq 2n$$
$$b_r = sum_{(r-2n)|l} a_l text{ }forall text{ } 2n+1 leq r leq 3n$$
$$ vdots $$
$$b_r = sum_{(r-(n-1)!)|l} a_l text{ }forall text{ } n(n-1)!- n +1 leq r leq n!$$



Writing the above properly now:



$$ sum_{r=1}^n frac{b_r}{r} + sum_{r=n+1}^{2n} frac{b_{r-n}}{r} + dots+ sum_{r=n!-n+1}^{n!} frac{b_{r-n!+n }}{r} sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$



Rearranging the L.H.S and R.H.S:



$$ sum_{r=1}^n sum_{k=0}^{(n-1)! -1 } b_r ( frac{1}{kn+ r}) sim (gamma+ ln n!) sum_{r=1}^n frac{a_r}{r} - sum_{r=1}^n frac{a_r}{r} ln(r) $$



Also note :
$$a_{l}=sum _{dmid l} mu left({frac {l}{d}}right)b_{d} implies frac{partial a_l}{ partial b_d} = mu left({frac {l}{d}}right) $$



where $mu$ is the mobius function. Let us now act $frac{partial }{partial b_d} $ on both sides where $d leq n$:



$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim (gamma+ ln n!) sum_{r=1}^n frac{mu(frac{r}{d})}{r} - sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$



where $mu(lambda)= 0$ where $lambda$ is not an integer. Simplifying some of the terms:



$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$



Let us take $d to 1$



$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ 1}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r) $$



Now using some approximations:



$$ 1 + frac{1}{n} sum_{k=1}^{(n-1)! -1 } frac{1}{k} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$



Using the first equation with a different $n$:



$$ 1 + frac{gamma + ln(n-1)!}{n} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$



$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$










share|cite|improve this question
























  • $sum_{n=1}^infty frac{mu(n)}{n} (-log n)^k$ converges for every $k$ (prime number theorem) and the rate of convergence encodes the zero-free region of $zeta(s)$ (thus the Riemann hypothesis). In particular $sum_{n=1}^N frac{mu(n)}{n} (-log n)^k= frac{d^k}{ds^k} frac{1}{zeta(s)}|_{s=1}+ O(N^{-1+sigma+epsilon})$ iff $zeta(s)$ has no zeros for $Re(s) > sigma$.
    – reuns
    Nov 20 at 1:04












  • @reuns So this is a highly non-trivial statement I'm trying to make?
    – More Anonymous
    Nov 20 at 1:07










  • I'll be editing this post (I caught a foolish error)
    – More Anonymous
    Nov 20 at 2:28













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Background & Question



I realised I could do a different manipulation from the one I did over here Strange method to obtain strange number theoretic identities? However after making some calculations I seems to be getting the wrong answer by perhaps an extra term.



I got the expression:



$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$



But as $n to infty$ we know the $(frac{1}{zeta(k)})' to 0 $ when $k$ to $1$.



Is the correct answer below?



$$sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} $$



If so where did I go wrong in my proof? And what is the "normal" proof?



Proof



Let us write a relation of the Euler–Mascheroni constant for large $n$.
$$ 1+ frac{1}{2} + frac{1}{3} + frac{1}{4} + dots +frac{1}{n!} sim gamma + ln(n!)$$



Or, multiplying $1/2$ boths sides and let $n! to n!/2$



$$ 0 + frac{1}{2} + 0 + frac{1}{4} + dots +frac{1}{n!} sim frac{gamma}{2} + frac{1}{2}ln(frac{n!}{2})$$



Or, multiplying $1/3$ boths sides and let $n! to n!/3$



$$ 0 + 0 + frac{1}{3} + 0 + dots +frac{1}{n!} sim frac{gamma}{3} + frac{1}{3}ln(frac{n!}{3})$$



And so on $n$ times ... Now multiplying the $r$'th row with $a_r$ and adding vertically (whilst defining $b_r$):



$$ a_1+ frac{a_1}{2} + frac{a_1}{3} + frac{a_1}{4} + dots +frac{a_1}{n!} sim a_1 gamma + a_1 ln(n!)$$



$$ 0 + frac{a_2}{2} + 0 + frac{a_2}{4} + dots +frac{a_2}{n!} sim a_2 frac{gamma}{2} + frac{a_2}{2}ln(frac{n!}{2})$$



$$ 0 + 0 + frac{a_3}{3} + 0 + dots +frac{a_3}{n!} sim a_3 frac{gamma}{3} + frac{a_3}{3}ln(frac{n!}{3})$$



$$vdots $$
$+$
$-----------------------------------$



$$ underbrace{frac{b_1}{1}}_{a_1/1} + underbrace{frac{b_2}{2}}_{(a_1+ a_2)/2} + underbrace{frac{b_3}{3}}_{(a_1+ a_3)/3} + dots sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$



In the above we define:



$$b_r = sum_{r|l} a_l text{ }forall text{ } 1 leq r leq n$$
$$b_r = sum_{(r-n)|l} a_l text{ }forall text{ } n+1 leq r leq 2n$$
$$b_r = sum_{(r-2n)|l} a_l text{ }forall text{ } 2n+1 leq r leq 3n$$
$$ vdots $$
$$b_r = sum_{(r-(n-1)!)|l} a_l text{ }forall text{ } n(n-1)!- n +1 leq r leq n!$$



Writing the above properly now:



$$ sum_{r=1}^n frac{b_r}{r} + sum_{r=n+1}^{2n} frac{b_{r-n}}{r} + dots+ sum_{r=n!-n+1}^{n!} frac{b_{r-n!+n }}{r} sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$



Rearranging the L.H.S and R.H.S:



$$ sum_{r=1}^n sum_{k=0}^{(n-1)! -1 } b_r ( frac{1}{kn+ r}) sim (gamma+ ln n!) sum_{r=1}^n frac{a_r}{r} - sum_{r=1}^n frac{a_r}{r} ln(r) $$



Also note :
$$a_{l}=sum _{dmid l} mu left({frac {l}{d}}right)b_{d} implies frac{partial a_l}{ partial b_d} = mu left({frac {l}{d}}right) $$



where $mu$ is the mobius function. Let us now act $frac{partial }{partial b_d} $ on both sides where $d leq n$:



$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim (gamma+ ln n!) sum_{r=1}^n frac{mu(frac{r}{d})}{r} - sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$



where $mu(lambda)= 0$ where $lambda$ is not an integer. Simplifying some of the terms:



$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$



Let us take $d to 1$



$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ 1}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r) $$



Now using some approximations:



$$ 1 + frac{1}{n} sum_{k=1}^{(n-1)! -1 } frac{1}{k} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$



Using the first equation with a different $n$:



$$ 1 + frac{gamma + ln(n-1)!}{n} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$



$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$










share|cite|improve this question















Background & Question



I realised I could do a different manipulation from the one I did over here Strange method to obtain strange number theoretic identities? However after making some calculations I seems to be getting the wrong answer by perhaps an extra term.



I got the expression:



$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$



But as $n to infty$ we know the $(frac{1}{zeta(k)})' to 0 $ when $k$ to $1$.



Is the correct answer below?



$$sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} $$



If so where did I go wrong in my proof? And what is the "normal" proof?



Proof



Let us write a relation of the Euler–Mascheroni constant for large $n$.
$$ 1+ frac{1}{2} + frac{1}{3} + frac{1}{4} + dots +frac{1}{n!} sim gamma + ln(n!)$$



Or, multiplying $1/2$ boths sides and let $n! to n!/2$



$$ 0 + frac{1}{2} + 0 + frac{1}{4} + dots +frac{1}{n!} sim frac{gamma}{2} + frac{1}{2}ln(frac{n!}{2})$$



Or, multiplying $1/3$ boths sides and let $n! to n!/3$



$$ 0 + 0 + frac{1}{3} + 0 + dots +frac{1}{n!} sim frac{gamma}{3} + frac{1}{3}ln(frac{n!}{3})$$



And so on $n$ times ... Now multiplying the $r$'th row with $a_r$ and adding vertically (whilst defining $b_r$):



$$ a_1+ frac{a_1}{2} + frac{a_1}{3} + frac{a_1}{4} + dots +frac{a_1}{n!} sim a_1 gamma + a_1 ln(n!)$$



$$ 0 + frac{a_2}{2} + 0 + frac{a_2}{4} + dots +frac{a_2}{n!} sim a_2 frac{gamma}{2} + frac{a_2}{2}ln(frac{n!}{2})$$



$$ 0 + 0 + frac{a_3}{3} + 0 + dots +frac{a_3}{n!} sim a_3 frac{gamma}{3} + frac{a_3}{3}ln(frac{n!}{3})$$



$$vdots $$
$+$
$-----------------------------------$



$$ underbrace{frac{b_1}{1}}_{a_1/1} + underbrace{frac{b_2}{2}}_{(a_1+ a_2)/2} + underbrace{frac{b_3}{3}}_{(a_1+ a_3)/3} + dots sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$



In the above we define:



$$b_r = sum_{r|l} a_l text{ }forall text{ } 1 leq r leq n$$
$$b_r = sum_{(r-n)|l} a_l text{ }forall text{ } n+1 leq r leq 2n$$
$$b_r = sum_{(r-2n)|l} a_l text{ }forall text{ } 2n+1 leq r leq 3n$$
$$ vdots $$
$$b_r = sum_{(r-(n-1)!)|l} a_l text{ }forall text{ } n(n-1)!- n +1 leq r leq n!$$



Writing the above properly now:



$$ sum_{r=1}^n frac{b_r}{r} + sum_{r=n+1}^{2n} frac{b_{r-n}}{r} + dots+ sum_{r=n!-n+1}^{n!} frac{b_{r-n!+n }}{r} sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$



Rearranging the L.H.S and R.H.S:



$$ sum_{r=1}^n sum_{k=0}^{(n-1)! -1 } b_r ( frac{1}{kn+ r}) sim (gamma+ ln n!) sum_{r=1}^n frac{a_r}{r} - sum_{r=1}^n frac{a_r}{r} ln(r) $$



Also note :
$$a_{l}=sum _{dmid l} mu left({frac {l}{d}}right)b_{d} implies frac{partial a_l}{ partial b_d} = mu left({frac {l}{d}}right) $$



where $mu$ is the mobius function. Let us now act $frac{partial }{partial b_d} $ on both sides where $d leq n$:



$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim (gamma+ ln n!) sum_{r=1}^n frac{mu(frac{r}{d})}{r} - sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$



where $mu(lambda)= 0$ where $lambda$ is not an integer. Simplifying some of the terms:



$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$



Let us take $d to 1$



$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ 1}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r) $$



Now using some approximations:



$$ 1 + frac{1}{n} sum_{k=1}^{(n-1)! -1 } frac{1}{k} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$



Using the first equation with a different $n$:



$$ 1 + frac{gamma + ln(n-1)!}{n} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$



$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$







combinatorics number-theory proof-verification alternative-proof zeta-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 20 at 0:50

























asked Nov 20 at 0:42









More Anonymous

32919




32919












  • $sum_{n=1}^infty frac{mu(n)}{n} (-log n)^k$ converges for every $k$ (prime number theorem) and the rate of convergence encodes the zero-free region of $zeta(s)$ (thus the Riemann hypothesis). In particular $sum_{n=1}^N frac{mu(n)}{n} (-log n)^k= frac{d^k}{ds^k} frac{1}{zeta(s)}|_{s=1}+ O(N^{-1+sigma+epsilon})$ iff $zeta(s)$ has no zeros for $Re(s) > sigma$.
    – reuns
    Nov 20 at 1:04












  • @reuns So this is a highly non-trivial statement I'm trying to make?
    – More Anonymous
    Nov 20 at 1:07










  • I'll be editing this post (I caught a foolish error)
    – More Anonymous
    Nov 20 at 2:28


















  • $sum_{n=1}^infty frac{mu(n)}{n} (-log n)^k$ converges for every $k$ (prime number theorem) and the rate of convergence encodes the zero-free region of $zeta(s)$ (thus the Riemann hypothesis). In particular $sum_{n=1}^N frac{mu(n)}{n} (-log n)^k= frac{d^k}{ds^k} frac{1}{zeta(s)}|_{s=1}+ O(N^{-1+sigma+epsilon})$ iff $zeta(s)$ has no zeros for $Re(s) > sigma$.
    – reuns
    Nov 20 at 1:04












  • @reuns So this is a highly non-trivial statement I'm trying to make?
    – More Anonymous
    Nov 20 at 1:07










  • I'll be editing this post (I caught a foolish error)
    – More Anonymous
    Nov 20 at 2:28
















$sum_{n=1}^infty frac{mu(n)}{n} (-log n)^k$ converges for every $k$ (prime number theorem) and the rate of convergence encodes the zero-free region of $zeta(s)$ (thus the Riemann hypothesis). In particular $sum_{n=1}^N frac{mu(n)}{n} (-log n)^k= frac{d^k}{ds^k} frac{1}{zeta(s)}|_{s=1}+ O(N^{-1+sigma+epsilon})$ iff $zeta(s)$ has no zeros for $Re(s) > sigma$.
– reuns
Nov 20 at 1:04






$sum_{n=1}^infty frac{mu(n)}{n} (-log n)^k$ converges for every $k$ (prime number theorem) and the rate of convergence encodes the zero-free region of $zeta(s)$ (thus the Riemann hypothesis). In particular $sum_{n=1}^N frac{mu(n)}{n} (-log n)^k= frac{d^k}{ds^k} frac{1}{zeta(s)}|_{s=1}+ O(N^{-1+sigma+epsilon})$ iff $zeta(s)$ has no zeros for $Re(s) > sigma$.
– reuns
Nov 20 at 1:04














@reuns So this is a highly non-trivial statement I'm trying to make?
– More Anonymous
Nov 20 at 1:07




@reuns So this is a highly non-trivial statement I'm trying to make?
– More Anonymous
Nov 20 at 1:07












I'll be editing this post (I caught a foolish error)
– More Anonymous
Nov 20 at 2:28




I'll be editing this post (I caught a foolish error)
– More Anonymous
Nov 20 at 2:28















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005763%2ferror-in-expression-of-incomplete-zeta-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005763%2ferror-in-expression-of-incomplete-zeta-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa