Error in expression of incomplete zeta function?
up vote
0
down vote
favorite
Background & Question
I realised I could do a different manipulation from the one I did over here Strange method to obtain strange number theoretic identities? However after making some calculations I seems to be getting the wrong answer by perhaps an extra term.
I got the expression:
$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$
But as $n to infty$ we know the $(frac{1}{zeta(k)})' to 0 $ when $k$ to $1$.
Is the correct answer below?
$$sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} $$
If so where did I go wrong in my proof? And what is the "normal" proof?
Proof
Let us write a relation of the Euler–Mascheroni constant for large $n$.
$$ 1+ frac{1}{2} + frac{1}{3} + frac{1}{4} + dots +frac{1}{n!} sim gamma + ln(n!)$$
Or, multiplying $1/2$ boths sides and let $n! to n!/2$
$$ 0 + frac{1}{2} + 0 + frac{1}{4} + dots +frac{1}{n!} sim frac{gamma}{2} + frac{1}{2}ln(frac{n!}{2})$$
Or, multiplying $1/3$ boths sides and let $n! to n!/3$
$$ 0 + 0 + frac{1}{3} + 0 + dots +frac{1}{n!} sim frac{gamma}{3} + frac{1}{3}ln(frac{n!}{3})$$
And so on $n$ times ... Now multiplying the $r$'th row with $a_r$ and adding vertically (whilst defining $b_r$):
$$ a_1+ frac{a_1}{2} + frac{a_1}{3} + frac{a_1}{4} + dots +frac{a_1}{n!} sim a_1 gamma + a_1 ln(n!)$$
$$ 0 + frac{a_2}{2} + 0 + frac{a_2}{4} + dots +frac{a_2}{n!} sim a_2 frac{gamma}{2} + frac{a_2}{2}ln(frac{n!}{2})$$
$$ 0 + 0 + frac{a_3}{3} + 0 + dots +frac{a_3}{n!} sim a_3 frac{gamma}{3} + frac{a_3}{3}ln(frac{n!}{3})$$
$$vdots $$
$+$
$-----------------------------------$
$$ underbrace{frac{b_1}{1}}_{a_1/1} + underbrace{frac{b_2}{2}}_{(a_1+ a_2)/2} + underbrace{frac{b_3}{3}}_{(a_1+ a_3)/3} + dots sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$
In the above we define:
$$b_r = sum_{r|l} a_l text{ }forall text{ } 1 leq r leq n$$
$$b_r = sum_{(r-n)|l} a_l text{ }forall text{ } n+1 leq r leq 2n$$
$$b_r = sum_{(r-2n)|l} a_l text{ }forall text{ } 2n+1 leq r leq 3n$$
$$ vdots $$
$$b_r = sum_{(r-(n-1)!)|l} a_l text{ }forall text{ } n(n-1)!- n +1 leq r leq n!$$
Writing the above properly now:
$$ sum_{r=1}^n frac{b_r}{r} + sum_{r=n+1}^{2n} frac{b_{r-n}}{r} + dots+ sum_{r=n!-n+1}^{n!} frac{b_{r-n!+n }}{r} sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$
Rearranging the L.H.S and R.H.S:
$$ sum_{r=1}^n sum_{k=0}^{(n-1)! -1 } b_r ( frac{1}{kn+ r}) sim (gamma+ ln n!) sum_{r=1}^n frac{a_r}{r} - sum_{r=1}^n frac{a_r}{r} ln(r) $$
Also note :
$$a_{l}=sum _{dmid l} mu left({frac {l}{d}}right)b_{d} implies frac{partial a_l}{ partial b_d} = mu left({frac {l}{d}}right) $$
where $mu$ is the mobius function. Let us now act $frac{partial }{partial b_d} $ on both sides where $d leq n$:
$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim (gamma+ ln n!) sum_{r=1}^n frac{mu(frac{r}{d})}{r} - sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$
where $mu(lambda)= 0$ where $lambda$ is not an integer. Simplifying some of the terms:
$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$
Let us take $d to 1$
$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ 1}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r) $$
Now using some approximations:
$$ 1 + frac{1}{n} sum_{k=1}^{(n-1)! -1 } frac{1}{k} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$
Using the first equation with a different $n$:
$$ 1 + frac{gamma + ln(n-1)!}{n} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$
$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$
combinatorics number-theory proof-verification alternative-proof zeta-functions
add a comment |
up vote
0
down vote
favorite
Background & Question
I realised I could do a different manipulation from the one I did over here Strange method to obtain strange number theoretic identities? However after making some calculations I seems to be getting the wrong answer by perhaps an extra term.
I got the expression:
$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$
But as $n to infty$ we know the $(frac{1}{zeta(k)})' to 0 $ when $k$ to $1$.
Is the correct answer below?
$$sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} $$
If so where did I go wrong in my proof? And what is the "normal" proof?
Proof
Let us write a relation of the Euler–Mascheroni constant for large $n$.
$$ 1+ frac{1}{2} + frac{1}{3} + frac{1}{4} + dots +frac{1}{n!} sim gamma + ln(n!)$$
Or, multiplying $1/2$ boths sides and let $n! to n!/2$
$$ 0 + frac{1}{2} + 0 + frac{1}{4} + dots +frac{1}{n!} sim frac{gamma}{2} + frac{1}{2}ln(frac{n!}{2})$$
Or, multiplying $1/3$ boths sides and let $n! to n!/3$
$$ 0 + 0 + frac{1}{3} + 0 + dots +frac{1}{n!} sim frac{gamma}{3} + frac{1}{3}ln(frac{n!}{3})$$
And so on $n$ times ... Now multiplying the $r$'th row with $a_r$ and adding vertically (whilst defining $b_r$):
$$ a_1+ frac{a_1}{2} + frac{a_1}{3} + frac{a_1}{4} + dots +frac{a_1}{n!} sim a_1 gamma + a_1 ln(n!)$$
$$ 0 + frac{a_2}{2} + 0 + frac{a_2}{4} + dots +frac{a_2}{n!} sim a_2 frac{gamma}{2} + frac{a_2}{2}ln(frac{n!}{2})$$
$$ 0 + 0 + frac{a_3}{3} + 0 + dots +frac{a_3}{n!} sim a_3 frac{gamma}{3} + frac{a_3}{3}ln(frac{n!}{3})$$
$$vdots $$
$+$
$-----------------------------------$
$$ underbrace{frac{b_1}{1}}_{a_1/1} + underbrace{frac{b_2}{2}}_{(a_1+ a_2)/2} + underbrace{frac{b_3}{3}}_{(a_1+ a_3)/3} + dots sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$
In the above we define:
$$b_r = sum_{r|l} a_l text{ }forall text{ } 1 leq r leq n$$
$$b_r = sum_{(r-n)|l} a_l text{ }forall text{ } n+1 leq r leq 2n$$
$$b_r = sum_{(r-2n)|l} a_l text{ }forall text{ } 2n+1 leq r leq 3n$$
$$ vdots $$
$$b_r = sum_{(r-(n-1)!)|l} a_l text{ }forall text{ } n(n-1)!- n +1 leq r leq n!$$
Writing the above properly now:
$$ sum_{r=1}^n frac{b_r}{r} + sum_{r=n+1}^{2n} frac{b_{r-n}}{r} + dots+ sum_{r=n!-n+1}^{n!} frac{b_{r-n!+n }}{r} sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$
Rearranging the L.H.S and R.H.S:
$$ sum_{r=1}^n sum_{k=0}^{(n-1)! -1 } b_r ( frac{1}{kn+ r}) sim (gamma+ ln n!) sum_{r=1}^n frac{a_r}{r} - sum_{r=1}^n frac{a_r}{r} ln(r) $$
Also note :
$$a_{l}=sum _{dmid l} mu left({frac {l}{d}}right)b_{d} implies frac{partial a_l}{ partial b_d} = mu left({frac {l}{d}}right) $$
where $mu$ is the mobius function. Let us now act $frac{partial }{partial b_d} $ on both sides where $d leq n$:
$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim (gamma+ ln n!) sum_{r=1}^n frac{mu(frac{r}{d})}{r} - sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$
where $mu(lambda)= 0$ where $lambda$ is not an integer. Simplifying some of the terms:
$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$
Let us take $d to 1$
$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ 1}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r) $$
Now using some approximations:
$$ 1 + frac{1}{n} sum_{k=1}^{(n-1)! -1 } frac{1}{k} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$
Using the first equation with a different $n$:
$$ 1 + frac{gamma + ln(n-1)!}{n} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$
$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$
combinatorics number-theory proof-verification alternative-proof zeta-functions
$sum_{n=1}^infty frac{mu(n)}{n} (-log n)^k$ converges for every $k$ (prime number theorem) and the rate of convergence encodes the zero-free region of $zeta(s)$ (thus the Riemann hypothesis). In particular $sum_{n=1}^N frac{mu(n)}{n} (-log n)^k= frac{d^k}{ds^k} frac{1}{zeta(s)}|_{s=1}+ O(N^{-1+sigma+epsilon})$ iff $zeta(s)$ has no zeros for $Re(s) > sigma$.
– reuns
Nov 20 at 1:04
@reuns So this is a highly non-trivial statement I'm trying to make?
– More Anonymous
Nov 20 at 1:07
I'll be editing this post (I caught a foolish error)
– More Anonymous
Nov 20 at 2:28
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Background & Question
I realised I could do a different manipulation from the one I did over here Strange method to obtain strange number theoretic identities? However after making some calculations I seems to be getting the wrong answer by perhaps an extra term.
I got the expression:
$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$
But as $n to infty$ we know the $(frac{1}{zeta(k)})' to 0 $ when $k$ to $1$.
Is the correct answer below?
$$sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} $$
If so where did I go wrong in my proof? And what is the "normal" proof?
Proof
Let us write a relation of the Euler–Mascheroni constant for large $n$.
$$ 1+ frac{1}{2} + frac{1}{3} + frac{1}{4} + dots +frac{1}{n!} sim gamma + ln(n!)$$
Or, multiplying $1/2$ boths sides and let $n! to n!/2$
$$ 0 + frac{1}{2} + 0 + frac{1}{4} + dots +frac{1}{n!} sim frac{gamma}{2} + frac{1}{2}ln(frac{n!}{2})$$
Or, multiplying $1/3$ boths sides and let $n! to n!/3$
$$ 0 + 0 + frac{1}{3} + 0 + dots +frac{1}{n!} sim frac{gamma}{3} + frac{1}{3}ln(frac{n!}{3})$$
And so on $n$ times ... Now multiplying the $r$'th row with $a_r$ and adding vertically (whilst defining $b_r$):
$$ a_1+ frac{a_1}{2} + frac{a_1}{3} + frac{a_1}{4} + dots +frac{a_1}{n!} sim a_1 gamma + a_1 ln(n!)$$
$$ 0 + frac{a_2}{2} + 0 + frac{a_2}{4} + dots +frac{a_2}{n!} sim a_2 frac{gamma}{2} + frac{a_2}{2}ln(frac{n!}{2})$$
$$ 0 + 0 + frac{a_3}{3} + 0 + dots +frac{a_3}{n!} sim a_3 frac{gamma}{3} + frac{a_3}{3}ln(frac{n!}{3})$$
$$vdots $$
$+$
$-----------------------------------$
$$ underbrace{frac{b_1}{1}}_{a_1/1} + underbrace{frac{b_2}{2}}_{(a_1+ a_2)/2} + underbrace{frac{b_3}{3}}_{(a_1+ a_3)/3} + dots sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$
In the above we define:
$$b_r = sum_{r|l} a_l text{ }forall text{ } 1 leq r leq n$$
$$b_r = sum_{(r-n)|l} a_l text{ }forall text{ } n+1 leq r leq 2n$$
$$b_r = sum_{(r-2n)|l} a_l text{ }forall text{ } 2n+1 leq r leq 3n$$
$$ vdots $$
$$b_r = sum_{(r-(n-1)!)|l} a_l text{ }forall text{ } n(n-1)!- n +1 leq r leq n!$$
Writing the above properly now:
$$ sum_{r=1}^n frac{b_r}{r} + sum_{r=n+1}^{2n} frac{b_{r-n}}{r} + dots+ sum_{r=n!-n+1}^{n!} frac{b_{r-n!+n }}{r} sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$
Rearranging the L.H.S and R.H.S:
$$ sum_{r=1}^n sum_{k=0}^{(n-1)! -1 } b_r ( frac{1}{kn+ r}) sim (gamma+ ln n!) sum_{r=1}^n frac{a_r}{r} - sum_{r=1}^n frac{a_r}{r} ln(r) $$
Also note :
$$a_{l}=sum _{dmid l} mu left({frac {l}{d}}right)b_{d} implies frac{partial a_l}{ partial b_d} = mu left({frac {l}{d}}right) $$
where $mu$ is the mobius function. Let us now act $frac{partial }{partial b_d} $ on both sides where $d leq n$:
$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim (gamma+ ln n!) sum_{r=1}^n frac{mu(frac{r}{d})}{r} - sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$
where $mu(lambda)= 0$ where $lambda$ is not an integer. Simplifying some of the terms:
$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$
Let us take $d to 1$
$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ 1}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r) $$
Now using some approximations:
$$ 1 + frac{1}{n} sum_{k=1}^{(n-1)! -1 } frac{1}{k} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$
Using the first equation with a different $n$:
$$ 1 + frac{gamma + ln(n-1)!}{n} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$
$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$
combinatorics number-theory proof-verification alternative-proof zeta-functions
Background & Question
I realised I could do a different manipulation from the one I did over here Strange method to obtain strange number theoretic identities? However after making some calculations I seems to be getting the wrong answer by perhaps an extra term.
I got the expression:
$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$
But as $n to infty$ we know the $(frac{1}{zeta(k)})' to 0 $ when $k$ to $1$.
Is the correct answer below?
$$sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} $$
If so where did I go wrong in my proof? And what is the "normal" proof?
Proof
Let us write a relation of the Euler–Mascheroni constant for large $n$.
$$ 1+ frac{1}{2} + frac{1}{3} + frac{1}{4} + dots +frac{1}{n!} sim gamma + ln(n!)$$
Or, multiplying $1/2$ boths sides and let $n! to n!/2$
$$ 0 + frac{1}{2} + 0 + frac{1}{4} + dots +frac{1}{n!} sim frac{gamma}{2} + frac{1}{2}ln(frac{n!}{2})$$
Or, multiplying $1/3$ boths sides and let $n! to n!/3$
$$ 0 + 0 + frac{1}{3} + 0 + dots +frac{1}{n!} sim frac{gamma}{3} + frac{1}{3}ln(frac{n!}{3})$$
And so on $n$ times ... Now multiplying the $r$'th row with $a_r$ and adding vertically (whilst defining $b_r$):
$$ a_1+ frac{a_1}{2} + frac{a_1}{3} + frac{a_1}{4} + dots +frac{a_1}{n!} sim a_1 gamma + a_1 ln(n!)$$
$$ 0 + frac{a_2}{2} + 0 + frac{a_2}{4} + dots +frac{a_2}{n!} sim a_2 frac{gamma}{2} + frac{a_2}{2}ln(frac{n!}{2})$$
$$ 0 + 0 + frac{a_3}{3} + 0 + dots +frac{a_3}{n!} sim a_3 frac{gamma}{3} + frac{a_3}{3}ln(frac{n!}{3})$$
$$vdots $$
$+$
$-----------------------------------$
$$ underbrace{frac{b_1}{1}}_{a_1/1} + underbrace{frac{b_2}{2}}_{(a_1+ a_2)/2} + underbrace{frac{b_3}{3}}_{(a_1+ a_3)/3} + dots sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$
In the above we define:
$$b_r = sum_{r|l} a_l text{ }forall text{ } 1 leq r leq n$$
$$b_r = sum_{(r-n)|l} a_l text{ }forall text{ } n+1 leq r leq 2n$$
$$b_r = sum_{(r-2n)|l} a_l text{ }forall text{ } 2n+1 leq r leq 3n$$
$$ vdots $$
$$b_r = sum_{(r-(n-1)!)|l} a_l text{ }forall text{ } n(n-1)!- n +1 leq r leq n!$$
Writing the above properly now:
$$ sum_{r=1}^n frac{b_r}{r} + sum_{r=n+1}^{2n} frac{b_{r-n}}{r} + dots+ sum_{r=n!-n+1}^{n!} frac{b_{r-n!+n }}{r} sim gamma sum_{r=1}^n frac{a_r}{r} + sum_{r=1}^n frac{a_r}{r} ln(frac{n!}{r}) $$
Rearranging the L.H.S and R.H.S:
$$ sum_{r=1}^n sum_{k=0}^{(n-1)! -1 } b_r ( frac{1}{kn+ r}) sim (gamma+ ln n!) sum_{r=1}^n frac{a_r}{r} - sum_{r=1}^n frac{a_r}{r} ln(r) $$
Also note :
$$a_{l}=sum _{dmid l} mu left({frac {l}{d}}right)b_{d} implies frac{partial a_l}{ partial b_d} = mu left({frac {l}{d}}right) $$
where $mu$ is the mobius function. Let us now act $frac{partial }{partial b_d} $ on both sides where $d leq n$:
$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim (gamma+ ln n!) sum_{r=1}^n frac{mu(frac{r}{d})}{r} - sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$
where $mu(lambda)= 0$ where $lambda$ is not an integer. Simplifying some of the terms:
$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ d}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(frac{r}{d})}{r} ln(r) $$
Let us take $d to 1$
$$ sum_{k=0}^{(n-1)! -1 } ( frac{1}{kn+ 1}) sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r) $$
Now using some approximations:
$$ 1 + frac{1}{n} sum_{k=1}^{(n-1)! -1 } frac{1}{k} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$
Using the first equation with a different $n$:
$$ 1 + frac{gamma + ln(n-1)!}{n} sim frac{(gamma+ ln n!) }{n}- sum_{r=1}^n frac{mu(r)}{r} ln(r)$$
$$implies sum_{r=1}^n frac{mu(r)}{r} ln(r) sim frac{ln n}{n} -1 $$
combinatorics number-theory proof-verification alternative-proof zeta-functions
combinatorics number-theory proof-verification alternative-proof zeta-functions
edited Nov 20 at 0:50
asked Nov 20 at 0:42
More Anonymous
32919
32919
$sum_{n=1}^infty frac{mu(n)}{n} (-log n)^k$ converges for every $k$ (prime number theorem) and the rate of convergence encodes the zero-free region of $zeta(s)$ (thus the Riemann hypothesis). In particular $sum_{n=1}^N frac{mu(n)}{n} (-log n)^k= frac{d^k}{ds^k} frac{1}{zeta(s)}|_{s=1}+ O(N^{-1+sigma+epsilon})$ iff $zeta(s)$ has no zeros for $Re(s) > sigma$.
– reuns
Nov 20 at 1:04
@reuns So this is a highly non-trivial statement I'm trying to make?
– More Anonymous
Nov 20 at 1:07
I'll be editing this post (I caught a foolish error)
– More Anonymous
Nov 20 at 2:28
add a comment |
$sum_{n=1}^infty frac{mu(n)}{n} (-log n)^k$ converges for every $k$ (prime number theorem) and the rate of convergence encodes the zero-free region of $zeta(s)$ (thus the Riemann hypothesis). In particular $sum_{n=1}^N frac{mu(n)}{n} (-log n)^k= frac{d^k}{ds^k} frac{1}{zeta(s)}|_{s=1}+ O(N^{-1+sigma+epsilon})$ iff $zeta(s)$ has no zeros for $Re(s) > sigma$.
– reuns
Nov 20 at 1:04
@reuns So this is a highly non-trivial statement I'm trying to make?
– More Anonymous
Nov 20 at 1:07
I'll be editing this post (I caught a foolish error)
– More Anonymous
Nov 20 at 2:28
$sum_{n=1}^infty frac{mu(n)}{n} (-log n)^k$ converges for every $k$ (prime number theorem) and the rate of convergence encodes the zero-free region of $zeta(s)$ (thus the Riemann hypothesis). In particular $sum_{n=1}^N frac{mu(n)}{n} (-log n)^k= frac{d^k}{ds^k} frac{1}{zeta(s)}|_{s=1}+ O(N^{-1+sigma+epsilon})$ iff $zeta(s)$ has no zeros for $Re(s) > sigma$.
– reuns
Nov 20 at 1:04
$sum_{n=1}^infty frac{mu(n)}{n} (-log n)^k$ converges for every $k$ (prime number theorem) and the rate of convergence encodes the zero-free region of $zeta(s)$ (thus the Riemann hypothesis). In particular $sum_{n=1}^N frac{mu(n)}{n} (-log n)^k= frac{d^k}{ds^k} frac{1}{zeta(s)}|_{s=1}+ O(N^{-1+sigma+epsilon})$ iff $zeta(s)$ has no zeros for $Re(s) > sigma$.
– reuns
Nov 20 at 1:04
@reuns So this is a highly non-trivial statement I'm trying to make?
– More Anonymous
Nov 20 at 1:07
@reuns So this is a highly non-trivial statement I'm trying to make?
– More Anonymous
Nov 20 at 1:07
I'll be editing this post (I caught a foolish error)
– More Anonymous
Nov 20 at 2:28
I'll be editing this post (I caught a foolish error)
– More Anonymous
Nov 20 at 2:28
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005763%2ferror-in-expression-of-incomplete-zeta-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005763%2ferror-in-expression-of-incomplete-zeta-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$sum_{n=1}^infty frac{mu(n)}{n} (-log n)^k$ converges for every $k$ (prime number theorem) and the rate of convergence encodes the zero-free region of $zeta(s)$ (thus the Riemann hypothesis). In particular $sum_{n=1}^N frac{mu(n)}{n} (-log n)^k= frac{d^k}{ds^k} frac{1}{zeta(s)}|_{s=1}+ O(N^{-1+sigma+epsilon})$ iff $zeta(s)$ has no zeros for $Re(s) > sigma$.
– reuns
Nov 20 at 1:04
@reuns So this is a highly non-trivial statement I'm trying to make?
– More Anonymous
Nov 20 at 1:07
I'll be editing this post (I caught a foolish error)
– More Anonymous
Nov 20 at 2:28