Why does this integral equal $0$?
up vote
11
down vote
favorite
In this question, the OP poses the following definite integral, which just happens to vanish:
$$int_1^sqrt2 frac{1}{x}lnbigg(frac{2-2x^2+x^4}{2x-2x^2+x^3}bigg)dx=0$$
As noticed by one commenter to the question, the only zero of the integrand is at $x=sqrt[3]{2}$, meaning that the integral of the integrand from $x=1$ to $x=sqrt[3]{2}$ is the additive inverse of the integral of the integrand from $x=sqrt[3]{2}$ to $x=sqrt{2}$.
This suggests some sort of symmetry obtainable by a substitution, but I cannot find an appropriate substitution or cancellation. It seems like the answer should be much simpler than those posted to the linked question.
Any ideas?
EDIT: I believe that this more general integral also vanishes:
$$int_1^{sqrt{t}}frac{1}{x}lnbigg(frac{t-sx^2+x^4}{tx-sx^2+x^3}bigg)dx=0$$
integration definite-integrals symmetry
add a comment |
up vote
11
down vote
favorite
In this question, the OP poses the following definite integral, which just happens to vanish:
$$int_1^sqrt2 frac{1}{x}lnbigg(frac{2-2x^2+x^4}{2x-2x^2+x^3}bigg)dx=0$$
As noticed by one commenter to the question, the only zero of the integrand is at $x=sqrt[3]{2}$, meaning that the integral of the integrand from $x=1$ to $x=sqrt[3]{2}$ is the additive inverse of the integral of the integrand from $x=sqrt[3]{2}$ to $x=sqrt{2}$.
This suggests some sort of symmetry obtainable by a substitution, but I cannot find an appropriate substitution or cancellation. It seems like the answer should be much simpler than those posted to the linked question.
Any ideas?
EDIT: I believe that this more general integral also vanishes:
$$int_1^{sqrt{t}}frac{1}{x}lnbigg(frac{t-sx^2+x^4}{tx-sx^2+x^3}bigg)dx=0$$
integration definite-integrals symmetry
@Rócherz Of course it isn't symmetric about $sqrt[3]{2}$; I simply mean that perhaps an appropriate substitution might lead to a cancellation.
– Frpzzd
Nov 20 at 0:47
add a comment |
up vote
11
down vote
favorite
up vote
11
down vote
favorite
In this question, the OP poses the following definite integral, which just happens to vanish:
$$int_1^sqrt2 frac{1}{x}lnbigg(frac{2-2x^2+x^4}{2x-2x^2+x^3}bigg)dx=0$$
As noticed by one commenter to the question, the only zero of the integrand is at $x=sqrt[3]{2}$, meaning that the integral of the integrand from $x=1$ to $x=sqrt[3]{2}$ is the additive inverse of the integral of the integrand from $x=sqrt[3]{2}$ to $x=sqrt{2}$.
This suggests some sort of symmetry obtainable by a substitution, but I cannot find an appropriate substitution or cancellation. It seems like the answer should be much simpler than those posted to the linked question.
Any ideas?
EDIT: I believe that this more general integral also vanishes:
$$int_1^{sqrt{t}}frac{1}{x}lnbigg(frac{t-sx^2+x^4}{tx-sx^2+x^3}bigg)dx=0$$
integration definite-integrals symmetry
In this question, the OP poses the following definite integral, which just happens to vanish:
$$int_1^sqrt2 frac{1}{x}lnbigg(frac{2-2x^2+x^4}{2x-2x^2+x^3}bigg)dx=0$$
As noticed by one commenter to the question, the only zero of the integrand is at $x=sqrt[3]{2}$, meaning that the integral of the integrand from $x=1$ to $x=sqrt[3]{2}$ is the additive inverse of the integral of the integrand from $x=sqrt[3]{2}$ to $x=sqrt{2}$.
This suggests some sort of symmetry obtainable by a substitution, but I cannot find an appropriate substitution or cancellation. It seems like the answer should be much simpler than those posted to the linked question.
Any ideas?
EDIT: I believe that this more general integral also vanishes:
$$int_1^{sqrt{t}}frac{1}{x}lnbigg(frac{t-sx^2+x^4}{tx-sx^2+x^3}bigg)dx=0$$
integration definite-integrals symmetry
integration definite-integrals symmetry
edited Nov 20 at 15:20
asked Nov 20 at 0:42
Frpzzd
20.8k638104
20.8k638104
@Rócherz Of course it isn't symmetric about $sqrt[3]{2}$; I simply mean that perhaps an appropriate substitution might lead to a cancellation.
– Frpzzd
Nov 20 at 0:47
add a comment |
@Rócherz Of course it isn't symmetric about $sqrt[3]{2}$; I simply mean that perhaps an appropriate substitution might lead to a cancellation.
– Frpzzd
Nov 20 at 0:47
@Rócherz Of course it isn't symmetric about $sqrt[3]{2}$; I simply mean that perhaps an appropriate substitution might lead to a cancellation.
– Frpzzd
Nov 20 at 0:47
@Rócherz Of course it isn't symmetric about $sqrt[3]{2}$; I simply mean that perhaps an appropriate substitution might lead to a cancellation.
– Frpzzd
Nov 20 at 0:47
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005764%2fwhy-does-this-integral-equal-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005764%2fwhy-does-this-integral-equal-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
@Rócherz Of course it isn't symmetric about $sqrt[3]{2}$; I simply mean that perhaps an appropriate substitution might lead to a cancellation.
– Frpzzd
Nov 20 at 0:47