Defining multiple functions












5














I have a matrix with 4 elements that I want to turn into functions without explicitely defininig all the functions "by hand":



matrix={{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(
3 u2 + 1. v2), (-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)}, {(
5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(
3 u2 + 1. v2), (-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(
3 u2 + 1. v2)}}


in other words, in order to define a function for each element I have to manually specify the functions:



eq1[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,1]];
eq2[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,2]];
eq3[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,1]];
eq4[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,2]];


(Although the arguments do not all appear in the RHS, they might in different scenarios, so I chose to specify all arguments).



I tried:



Table[eq[i, j][u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[i, j]], {i, 2}, {j, 2}]


but that does not seem to work. Or at least I don't get how to access eq now:



eq[1, 1]


does not work. Any help appreciated.










share|improve this question



























    5














    I have a matrix with 4 elements that I want to turn into functions without explicitely defininig all the functions "by hand":



    matrix={{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(
    3 u2 + 1. v2), (-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)}, {(
    5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(
    3 u2 + 1. v2), (-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(
    3 u2 + 1. v2)}}


    in other words, in order to define a function for each element I have to manually specify the functions:



    eq1[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,1]];
    eq2[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,2]];
    eq3[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,1]];
    eq4[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,2]];


    (Although the arguments do not all appear in the RHS, they might in different scenarios, so I chose to specify all arguments).



    I tried:



    Table[eq[i, j][u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[i, j]], {i, 2}, {j, 2}]


    but that does not seem to work. Or at least I don't get how to access eq now:



    eq[1, 1]


    does not work. Any help appreciated.










    share|improve this question

























      5












      5








      5







      I have a matrix with 4 elements that I want to turn into functions without explicitely defininig all the functions "by hand":



      matrix={{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(
      3 u2 + 1. v2), (-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)}, {(
      5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(
      3 u2 + 1. v2), (-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(
      3 u2 + 1. v2)}}


      in other words, in order to define a function for each element I have to manually specify the functions:



      eq1[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,1]];
      eq2[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,2]];
      eq3[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,1]];
      eq4[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,2]];


      (Although the arguments do not all appear in the RHS, they might in different scenarios, so I chose to specify all arguments).



      I tried:



      Table[eq[i, j][u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[i, j]], {i, 2}, {j, 2}]


      but that does not seem to work. Or at least I don't get how to access eq now:



      eq[1, 1]


      does not work. Any help appreciated.










      share|improve this question













      I have a matrix with 4 elements that I want to turn into functions without explicitely defininig all the functions "by hand":



      matrix={{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(
      3 u2 + 1. v2), (-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)}, {(
      5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(
      3 u2 + 1. v2), (-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(
      3 u2 + 1. v2)}}


      in other words, in order to define a function for each element I have to manually specify the functions:



      eq1[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,1]];
      eq2[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[1,2]];
      eq3[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,1]];
      eq4[u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[2,2]];


      (Although the arguments do not all appear in the RHS, they might in different scenarios, so I chose to specify all arguments).



      I tried:



      Table[eq[i, j][u1_,u2_, v1_,v2_, x11_,x12_,x21_,x22_] := matrix[[i, j]], {i, 2}, {j, 2}]


      but that does not seem to work. Or at least I don't get how to access eq now:



      eq[1, 1]


      does not work. Any help appreciated.







      functions function-construction






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Dec 15 '18 at 15:37









      holisticholistic

      1,209620




      1,209620






















          1 Answer
          1






          active

          oldest

          votes


















          6














          matrix = {{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(3 u2 + 1. v2),
          (-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)},
          {(5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(3 u2 + 1. v2),
          (-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(3 u2 + 1. v2)}};

          Table[eq[i, j][u1_, u2_, v1_, v2_, x11_, x12_, x21_, x22_] :=
          Evaluate[matrix[[i, j]]], {i, 2}, {j, 2}];

          ?eq


          (definitions displayed)



          Evaluation examples



          eq[1, 1][1, 2, 3, 4, 5, 6, 7, 8]



          0.5




          Table[eq[i, j][1, 2, 3, 4, 5, 6, 7, 8], {i, 2}, {j, 2}]



          {{0.5, -1.5}, {12.4, -5.8}}







          share|improve this answer



















          • 1




            Ah I see..well I was close :). Thank you!
            – holistic
            Dec 15 '18 at 16:11











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "387"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f187948%2fdefining-multiple-functions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          6














          matrix = {{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(3 u2 + 1. v2),
          (-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)},
          {(5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(3 u2 + 1. v2),
          (-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(3 u2 + 1. v2)}};

          Table[eq[i, j][u1_, u2_, v1_, v2_, x11_, x12_, x21_, x22_] :=
          Evaluate[matrix[[i, j]]], {i, 2}, {j, 2}];

          ?eq


          (definitions displayed)



          Evaluation examples



          eq[1, 1][1, 2, 3, 4, 5, 6, 7, 8]



          0.5




          Table[eq[i, j][1, 2, 3, 4, 5, 6, 7, 8], {i, 2}, {j, 2}]



          {{0.5, -1.5}, {12.4, -5.8}}







          share|improve this answer



















          • 1




            Ah I see..well I was close :). Thank you!
            – holistic
            Dec 15 '18 at 16:11
















          6














          matrix = {{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(3 u2 + 1. v2),
          (-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)},
          {(5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(3 u2 + 1. v2),
          (-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(3 u2 + 1. v2)}};

          Table[eq[i, j][u1_, u2_, v1_, v2_, x11_, x12_, x21_, x22_] :=
          Evaluate[matrix[[i, j]]], {i, 2}, {j, 2}];

          ?eq


          (definitions displayed)



          Evaluation examples



          eq[1, 1][1, 2, 3, 4, 5, 6, 7, 8]



          0.5




          Table[eq[i, j][1, 2, 3, 4, 5, 6, 7, 8], {i, 2}, {j, 2}]



          {{0.5, -1.5}, {12.4, -5.8}}







          share|improve this answer



















          • 1




            Ah I see..well I was close :). Thank you!
            – holistic
            Dec 15 '18 at 16:11














          6












          6








          6






          matrix = {{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(3 u2 + 1. v2),
          (-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)},
          {(5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(3 u2 + 1. v2),
          (-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(3 u2 + 1. v2)}};

          Table[eq[i, j][u1_, u2_, v1_, v2_, x11_, x12_, x21_, x22_] :=
          Evaluate[matrix[[i, j]]], {i, 2}, {j, 2}];

          ?eq


          (definitions displayed)



          Evaluation examples



          eq[1, 1][1, 2, 3, 4, 5, 6, 7, 8]



          0.5




          Table[eq[i, j][1, 2, 3, 4, 5, 6, 7, 8], {i, 2}, {j, 2}]



          {{0.5, -1.5}, {12.4, -5.8}}







          share|improve this answer














          matrix = {{(6. u2 - 3 v2 + 0.3 u2 x11 + 0.1 v2 x11)/(3 u2 + 1. v2),
          (-15. + 1.5 u2 x12 + 0.5 v2 x12)/(-3. u2 - v2)},
          {(5. u2 v2 + 3.6 u2 x21 + 1.2 v2 x21)/(3 u2 + 1. v2),
          (-9. u2 + 2 v2 - 1.8 u2 x22 - 0.6 v2 x22)/(3 u2 + 1. v2)}};

          Table[eq[i, j][u1_, u2_, v1_, v2_, x11_, x12_, x21_, x22_] :=
          Evaluate[matrix[[i, j]]], {i, 2}, {j, 2}];

          ?eq


          (definitions displayed)



          Evaluation examples



          eq[1, 1][1, 2, 3, 4, 5, 6, 7, 8]



          0.5




          Table[eq[i, j][1, 2, 3, 4, 5, 6, 7, 8], {i, 2}, {j, 2}]



          {{0.5, -1.5}, {12.4, -5.8}}








          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Dec 15 '18 at 16:03

























          answered Dec 15 '18 at 15:57









          Chris DegnenChris Degnen

          21.8k23585




          21.8k23585








          • 1




            Ah I see..well I was close :). Thank you!
            – holistic
            Dec 15 '18 at 16:11














          • 1




            Ah I see..well I was close :). Thank you!
            – holistic
            Dec 15 '18 at 16:11








          1




          1




          Ah I see..well I was close :). Thank you!
          – holistic
          Dec 15 '18 at 16:11




          Ah I see..well I was close :). Thank you!
          – holistic
          Dec 15 '18 at 16:11


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematica Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f187948%2fdefining-multiple-functions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa