When does the semigroup corresponding to a stochastic process has the Feller property?












0














Let





  • $(Omega,mathcal A,operatorname P)$ be a probability space


  • $(X_t)_{tge0}$ be a real-valued process on $(Omega,mathcal A,operatorname P)$


  • $E$ be a closed subspace of $left{f:mathbb Rtomathbb Rmid ftext{ is bounded and Borel measurable}right}$ equipped with the supremum norm


Note that there is a Markov kernel $kappa_{s,:t}$ (a regular version of the conditional probability distribution of $X_t$ given $X_s$ under $operatorname P$) on $(mathbb R,mathcal B(mathbb R))$ with $$kappa_{s,:t}(x,B)=operatorname Pleft[X_tin Bmid X_s=xright];;;text{for all }(x,B)inmathbb Rtimesmathcal B(mathbb R)tag1$$ for all $s,tge0$. Moreover, $$(T_{s,:t}f)(x):=intkappa_{s,:t}(x,{rm d}y)f(y)=operatorname Eleft[f(X_t)mid X_s=xright];;;text{for }xinmathbb Rtext{ and }fin E$$ is a contractive linear operator on $E$ for all $s,tge0$.



Assuming that $X$ is continuous and $Esubseteq C(mathbb R)$, we easily obtain $$(T_{s,:t}f)(x)xrightarrow{tto s}f(x);;;text{for all }xinmathbb Rtext{ and }fin Etag2$$ by the dominated convergence theorem.




Which further condition on $X$ do we need if we want that $T_{s,:t}C_0(mathbb R)subseteq C_0(mathbb R)$.




I think a necessary condition would be $$operatorname Pleft[|X_t|<rmid X_s=xright]xrightarrow{|x|toinfty}0;;;text{for all }r>0tag3,$$ since then $$operatorname Eleft[f(X_t)mid X_s=xright]xrightarrow{|x|toinfty}inftytag4$$ as long as $fin E$ with $$f(x)xrightarrow{|x|toinfty}infty.$$ So, let $s,tge0$, $r>0$ and $xinmathbb R$ with $|x|>r$. By Markov's inequality, $$operatorname Pleft[|X_t|<rmid X_s=xright]lefrac{operatorname Eleft[|X_t-x|^2mid X_s=xright]}{(|x|-r)^2}.tag5$$




I'm primarily interested in the case where $X$ is the strong solution of an SDE. So, let $(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$, $W$ be a $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$ and $b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable. We now assume that $$X_t=X_s+int_s^tb(r,X_r):{rm d}r+int_s^tsigma(s,X_s):{rm d}W_s;;;text{almost surely}tag6.$$ I'll assume that $$operatorname Eleft[int_s^tb^2(r,X_r)+sigma^2(r,X_r):{rm d}rright]<inftytag7.$$




By Jensen's inequality and the Itō isometry, we obtain $$operatorname Eleft[|X_t-x|^2mid X_s=xright]le2operatorname Eleft[int_s^t(t-s)b^2(r,X_r)+sigma^2(r,X_r):{rm d}rright]tag8.$$




If we additionally assume that $b$ and $sigma$ are bounded, we are able to conclude that there is a $Cge0$ with $$operatorname Pleft[|X_t|<rmid X_s=xright]lefrac C{(|x|-r)^2}xrightarrow{|x|toinfty}0tag9.$$ Please tell me when I made a mistake. In any case, are we able to drop the assumption $(7)$ and/or find an assumption milder than boundedness on $b,sigma$? I could imagine that we could assume square-integrability of $X$ and linear growth of $b,sigma$ instead, for example.











share|cite|improve this question





























    0














    Let





    • $(Omega,mathcal A,operatorname P)$ be a probability space


    • $(X_t)_{tge0}$ be a real-valued process on $(Omega,mathcal A,operatorname P)$


    • $E$ be a closed subspace of $left{f:mathbb Rtomathbb Rmid ftext{ is bounded and Borel measurable}right}$ equipped with the supremum norm


    Note that there is a Markov kernel $kappa_{s,:t}$ (a regular version of the conditional probability distribution of $X_t$ given $X_s$ under $operatorname P$) on $(mathbb R,mathcal B(mathbb R))$ with $$kappa_{s,:t}(x,B)=operatorname Pleft[X_tin Bmid X_s=xright];;;text{for all }(x,B)inmathbb Rtimesmathcal B(mathbb R)tag1$$ for all $s,tge0$. Moreover, $$(T_{s,:t}f)(x):=intkappa_{s,:t}(x,{rm d}y)f(y)=operatorname Eleft[f(X_t)mid X_s=xright];;;text{for }xinmathbb Rtext{ and }fin E$$ is a contractive linear operator on $E$ for all $s,tge0$.



    Assuming that $X$ is continuous and $Esubseteq C(mathbb R)$, we easily obtain $$(T_{s,:t}f)(x)xrightarrow{tto s}f(x);;;text{for all }xinmathbb Rtext{ and }fin Etag2$$ by the dominated convergence theorem.




    Which further condition on $X$ do we need if we want that $T_{s,:t}C_0(mathbb R)subseteq C_0(mathbb R)$.




    I think a necessary condition would be $$operatorname Pleft[|X_t|<rmid X_s=xright]xrightarrow{|x|toinfty}0;;;text{for all }r>0tag3,$$ since then $$operatorname Eleft[f(X_t)mid X_s=xright]xrightarrow{|x|toinfty}inftytag4$$ as long as $fin E$ with $$f(x)xrightarrow{|x|toinfty}infty.$$ So, let $s,tge0$, $r>0$ and $xinmathbb R$ with $|x|>r$. By Markov's inequality, $$operatorname Pleft[|X_t|<rmid X_s=xright]lefrac{operatorname Eleft[|X_t-x|^2mid X_s=xright]}{(|x|-r)^2}.tag5$$




    I'm primarily interested in the case where $X$ is the strong solution of an SDE. So, let $(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$, $W$ be a $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$ and $b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable. We now assume that $$X_t=X_s+int_s^tb(r,X_r):{rm d}r+int_s^tsigma(s,X_s):{rm d}W_s;;;text{almost surely}tag6.$$ I'll assume that $$operatorname Eleft[int_s^tb^2(r,X_r)+sigma^2(r,X_r):{rm d}rright]<inftytag7.$$




    By Jensen's inequality and the Itō isometry, we obtain $$operatorname Eleft[|X_t-x|^2mid X_s=xright]le2operatorname Eleft[int_s^t(t-s)b^2(r,X_r)+sigma^2(r,X_r):{rm d}rright]tag8.$$




    If we additionally assume that $b$ and $sigma$ are bounded, we are able to conclude that there is a $Cge0$ with $$operatorname Pleft[|X_t|<rmid X_s=xright]lefrac C{(|x|-r)^2}xrightarrow{|x|toinfty}0tag9.$$ Please tell me when I made a mistake. In any case, are we able to drop the assumption $(7)$ and/or find an assumption milder than boundedness on $b,sigma$? I could imagine that we could assume square-integrability of $X$ and linear growth of $b,sigma$ instead, for example.











    share|cite|improve this question



























      0












      0








      0







      Let





      • $(Omega,mathcal A,operatorname P)$ be a probability space


      • $(X_t)_{tge0}$ be a real-valued process on $(Omega,mathcal A,operatorname P)$


      • $E$ be a closed subspace of $left{f:mathbb Rtomathbb Rmid ftext{ is bounded and Borel measurable}right}$ equipped with the supremum norm


      Note that there is a Markov kernel $kappa_{s,:t}$ (a regular version of the conditional probability distribution of $X_t$ given $X_s$ under $operatorname P$) on $(mathbb R,mathcal B(mathbb R))$ with $$kappa_{s,:t}(x,B)=operatorname Pleft[X_tin Bmid X_s=xright];;;text{for all }(x,B)inmathbb Rtimesmathcal B(mathbb R)tag1$$ for all $s,tge0$. Moreover, $$(T_{s,:t}f)(x):=intkappa_{s,:t}(x,{rm d}y)f(y)=operatorname Eleft[f(X_t)mid X_s=xright];;;text{for }xinmathbb Rtext{ and }fin E$$ is a contractive linear operator on $E$ for all $s,tge0$.



      Assuming that $X$ is continuous and $Esubseteq C(mathbb R)$, we easily obtain $$(T_{s,:t}f)(x)xrightarrow{tto s}f(x);;;text{for all }xinmathbb Rtext{ and }fin Etag2$$ by the dominated convergence theorem.




      Which further condition on $X$ do we need if we want that $T_{s,:t}C_0(mathbb R)subseteq C_0(mathbb R)$.




      I think a necessary condition would be $$operatorname Pleft[|X_t|<rmid X_s=xright]xrightarrow{|x|toinfty}0;;;text{for all }r>0tag3,$$ since then $$operatorname Eleft[f(X_t)mid X_s=xright]xrightarrow{|x|toinfty}inftytag4$$ as long as $fin E$ with $$f(x)xrightarrow{|x|toinfty}infty.$$ So, let $s,tge0$, $r>0$ and $xinmathbb R$ with $|x|>r$. By Markov's inequality, $$operatorname Pleft[|X_t|<rmid X_s=xright]lefrac{operatorname Eleft[|X_t-x|^2mid X_s=xright]}{(|x|-r)^2}.tag5$$




      I'm primarily interested in the case where $X$ is the strong solution of an SDE. So, let $(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$, $W$ be a $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$ and $b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable. We now assume that $$X_t=X_s+int_s^tb(r,X_r):{rm d}r+int_s^tsigma(s,X_s):{rm d}W_s;;;text{almost surely}tag6.$$ I'll assume that $$operatorname Eleft[int_s^tb^2(r,X_r)+sigma^2(r,X_r):{rm d}rright]<inftytag7.$$




      By Jensen's inequality and the Itō isometry, we obtain $$operatorname Eleft[|X_t-x|^2mid X_s=xright]le2operatorname Eleft[int_s^t(t-s)b^2(r,X_r)+sigma^2(r,X_r):{rm d}rright]tag8.$$




      If we additionally assume that $b$ and $sigma$ are bounded, we are able to conclude that there is a $Cge0$ with $$operatorname Pleft[|X_t|<rmid X_s=xright]lefrac C{(|x|-r)^2}xrightarrow{|x|toinfty}0tag9.$$ Please tell me when I made a mistake. In any case, are we able to drop the assumption $(7)$ and/or find an assumption milder than boundedness on $b,sigma$? I could imagine that we could assume square-integrability of $X$ and linear growth of $b,sigma$ instead, for example.











      share|cite|improve this question















      Let





      • $(Omega,mathcal A,operatorname P)$ be a probability space


      • $(X_t)_{tge0}$ be a real-valued process on $(Omega,mathcal A,operatorname P)$


      • $E$ be a closed subspace of $left{f:mathbb Rtomathbb Rmid ftext{ is bounded and Borel measurable}right}$ equipped with the supremum norm


      Note that there is a Markov kernel $kappa_{s,:t}$ (a regular version of the conditional probability distribution of $X_t$ given $X_s$ under $operatorname P$) on $(mathbb R,mathcal B(mathbb R))$ with $$kappa_{s,:t}(x,B)=operatorname Pleft[X_tin Bmid X_s=xright];;;text{for all }(x,B)inmathbb Rtimesmathcal B(mathbb R)tag1$$ for all $s,tge0$. Moreover, $$(T_{s,:t}f)(x):=intkappa_{s,:t}(x,{rm d}y)f(y)=operatorname Eleft[f(X_t)mid X_s=xright];;;text{for }xinmathbb Rtext{ and }fin E$$ is a contractive linear operator on $E$ for all $s,tge0$.



      Assuming that $X$ is continuous and $Esubseteq C(mathbb R)$, we easily obtain $$(T_{s,:t}f)(x)xrightarrow{tto s}f(x);;;text{for all }xinmathbb Rtext{ and }fin Etag2$$ by the dominated convergence theorem.




      Which further condition on $X$ do we need if we want that $T_{s,:t}C_0(mathbb R)subseteq C_0(mathbb R)$.




      I think a necessary condition would be $$operatorname Pleft[|X_t|<rmid X_s=xright]xrightarrow{|x|toinfty}0;;;text{for all }r>0tag3,$$ since then $$operatorname Eleft[f(X_t)mid X_s=xright]xrightarrow{|x|toinfty}inftytag4$$ as long as $fin E$ with $$f(x)xrightarrow{|x|toinfty}infty.$$ So, let $s,tge0$, $r>0$ and $xinmathbb R$ with $|x|>r$. By Markov's inequality, $$operatorname Pleft[|X_t|<rmid X_s=xright]lefrac{operatorname Eleft[|X_t-x|^2mid X_s=xright]}{(|x|-r)^2}.tag5$$




      I'm primarily interested in the case where $X$ is the strong solution of an SDE. So, let $(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$, $W$ be a $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$ and $b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable. We now assume that $$X_t=X_s+int_s^tb(r,X_r):{rm d}r+int_s^tsigma(s,X_s):{rm d}W_s;;;text{almost surely}tag6.$$ I'll assume that $$operatorname Eleft[int_s^tb^2(r,X_r)+sigma^2(r,X_r):{rm d}rright]<inftytag7.$$




      By Jensen's inequality and the Itō isometry, we obtain $$operatorname Eleft[|X_t-x|^2mid X_s=xright]le2operatorname Eleft[int_s^t(t-s)b^2(r,X_r)+sigma^2(r,X_r):{rm d}rright]tag8.$$




      If we additionally assume that $b$ and $sigma$ are bounded, we are able to conclude that there is a $Cge0$ with $$operatorname Pleft[|X_t|<rmid X_s=xright]lefrac C{(|x|-r)^2}xrightarrow{|x|toinfty}0tag9.$$ Please tell me when I made a mistake. In any case, are we able to drop the assumption $(7)$ and/or find an assumption milder than boundedness on $b,sigma$? I could imagine that we could assume square-integrability of $X$ and linear growth of $b,sigma$ instead, for example.








      probability-theory stochastic-processes markov-process stochastic-integrals stochastic-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 23 at 23:56

























      asked Nov 23 at 22:45









      0xbadf00d

      1,80441430




      1,80441430



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010938%2fwhen-does-the-semigroup-corresponding-to-a-stochastic-process-has-the-feller-pro%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010938%2fwhen-does-the-semigroup-corresponding-to-a-stochastic-process-has-the-feller-pro%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

          How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...