Lebesgue Density $f$ with compact support, polynomial $p$ of degree $k$. Then convolution $fstar p$ is...












0














Let $f(.)$ be a continuous Lebesgue-density-function with compact support $mathrm{supp}f={x:f(x)neq0}$. Let $p(.)$ be a polynomial with degree $k$.




Then the convolution $h:=fstar p$ is an integrable function and can be written as polynomial.




What I tried:



$fstar p(y)=int_{-infty}^{+infty}f(x-y)p(y)dy=int_{-infty}^{+infty}f(y)p(x-y)dy$.



$p=sum_{m=0}^{k}alpha_mt^m$. We only consider $p(t)=t^m forall m=0,ldots,k$.



So $fstar p(x) =int_{-infty}^{+infty}f(y)(x-y)^m$ which is by the binomial theorem $sum_{i=1}^{m}x^i{mchoose i}int_{-infty}^{infty}f(y)(-y)^{m-i}$ Where the product of the terms after $x^i$ denote the polynomial coefficient. So $f star p$ is a polynomial.



Now I want to show that $f star p$ is integrable.



The support is compact so we can reach the maximum of p$max_{x in mathrm{supp} f}p(x)=:K<infty$



$int_{-infty}^{+infty}int_{-infty}^{+infty}f(x-y)p(y)dydx=int_{-infty}^{infty}int_{supp f}f(x-y)p(y)dydxleint_{-infty}^{+infty}int_{mathrm{supp} f}f(x-y)Kdydx$.



Since $f$ is a density function



$int_{-infty}^{+infty}int_{mathrm{supp} f}f(x-y)dydxle1$ (I'm not sure about that)



So $int_{-infty}^{+infty}(fstar p)(x)dxle K<infty$










share|cite|improve this question






















  • No non-constant polynomial is integrable on $mathbb R$.
    – Kavi Rama Murthy
    Nov 27 '18 at 23:48


















0














Let $f(.)$ be a continuous Lebesgue-density-function with compact support $mathrm{supp}f={x:f(x)neq0}$. Let $p(.)$ be a polynomial with degree $k$.




Then the convolution $h:=fstar p$ is an integrable function and can be written as polynomial.




What I tried:



$fstar p(y)=int_{-infty}^{+infty}f(x-y)p(y)dy=int_{-infty}^{+infty}f(y)p(x-y)dy$.



$p=sum_{m=0}^{k}alpha_mt^m$. We only consider $p(t)=t^m forall m=0,ldots,k$.



So $fstar p(x) =int_{-infty}^{+infty}f(y)(x-y)^m$ which is by the binomial theorem $sum_{i=1}^{m}x^i{mchoose i}int_{-infty}^{infty}f(y)(-y)^{m-i}$ Where the product of the terms after $x^i$ denote the polynomial coefficient. So $f star p$ is a polynomial.



Now I want to show that $f star p$ is integrable.



The support is compact so we can reach the maximum of p$max_{x in mathrm{supp} f}p(x)=:K<infty$



$int_{-infty}^{+infty}int_{-infty}^{+infty}f(x-y)p(y)dydx=int_{-infty}^{infty}int_{supp f}f(x-y)p(y)dydxleint_{-infty}^{+infty}int_{mathrm{supp} f}f(x-y)Kdydx$.



Since $f$ is a density function



$int_{-infty}^{+infty}int_{mathrm{supp} f}f(x-y)dydxle1$ (I'm not sure about that)



So $int_{-infty}^{+infty}(fstar p)(x)dxle K<infty$










share|cite|improve this question






















  • No non-constant polynomial is integrable on $mathbb R$.
    – Kavi Rama Murthy
    Nov 27 '18 at 23:48
















0












0








0







Let $f(.)$ be a continuous Lebesgue-density-function with compact support $mathrm{supp}f={x:f(x)neq0}$. Let $p(.)$ be a polynomial with degree $k$.




Then the convolution $h:=fstar p$ is an integrable function and can be written as polynomial.




What I tried:



$fstar p(y)=int_{-infty}^{+infty}f(x-y)p(y)dy=int_{-infty}^{+infty}f(y)p(x-y)dy$.



$p=sum_{m=0}^{k}alpha_mt^m$. We only consider $p(t)=t^m forall m=0,ldots,k$.



So $fstar p(x) =int_{-infty}^{+infty}f(y)(x-y)^m$ which is by the binomial theorem $sum_{i=1}^{m}x^i{mchoose i}int_{-infty}^{infty}f(y)(-y)^{m-i}$ Where the product of the terms after $x^i$ denote the polynomial coefficient. So $f star p$ is a polynomial.



Now I want to show that $f star p$ is integrable.



The support is compact so we can reach the maximum of p$max_{x in mathrm{supp} f}p(x)=:K<infty$



$int_{-infty}^{+infty}int_{-infty}^{+infty}f(x-y)p(y)dydx=int_{-infty}^{infty}int_{supp f}f(x-y)p(y)dydxleint_{-infty}^{+infty}int_{mathrm{supp} f}f(x-y)Kdydx$.



Since $f$ is a density function



$int_{-infty}^{+infty}int_{mathrm{supp} f}f(x-y)dydxle1$ (I'm not sure about that)



So $int_{-infty}^{+infty}(fstar p)(x)dxle K<infty$










share|cite|improve this question













Let $f(.)$ be a continuous Lebesgue-density-function with compact support $mathrm{supp}f={x:f(x)neq0}$. Let $p(.)$ be a polynomial with degree $k$.




Then the convolution $h:=fstar p$ is an integrable function and can be written as polynomial.




What I tried:



$fstar p(y)=int_{-infty}^{+infty}f(x-y)p(y)dy=int_{-infty}^{+infty}f(y)p(x-y)dy$.



$p=sum_{m=0}^{k}alpha_mt^m$. We only consider $p(t)=t^m forall m=0,ldots,k$.



So $fstar p(x) =int_{-infty}^{+infty}f(y)(x-y)^m$ which is by the binomial theorem $sum_{i=1}^{m}x^i{mchoose i}int_{-infty}^{infty}f(y)(-y)^{m-i}$ Where the product of the terms after $x^i$ denote the polynomial coefficient. So $f star p$ is a polynomial.



Now I want to show that $f star p$ is integrable.



The support is compact so we can reach the maximum of p$max_{x in mathrm{supp} f}p(x)=:K<infty$



$int_{-infty}^{+infty}int_{-infty}^{+infty}f(x-y)p(y)dydx=int_{-infty}^{infty}int_{supp f}f(x-y)p(y)dydxleint_{-infty}^{+infty}int_{mathrm{supp} f}f(x-y)Kdydx$.



Since $f$ is a density function



$int_{-infty}^{+infty}int_{mathrm{supp} f}f(x-y)dydxle1$ (I'm not sure about that)



So $int_{-infty}^{+infty}(fstar p)(x)dxle K<infty$







real-analysis analysis measure-theory convolution






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 27 '18 at 21:57









conradconrad

757




757












  • No non-constant polynomial is integrable on $mathbb R$.
    – Kavi Rama Murthy
    Nov 27 '18 at 23:48




















  • No non-constant polynomial is integrable on $mathbb R$.
    – Kavi Rama Murthy
    Nov 27 '18 at 23:48


















No non-constant polynomial is integrable on $mathbb R$.
– Kavi Rama Murthy
Nov 27 '18 at 23:48






No non-constant polynomial is integrable on $mathbb R$.
– Kavi Rama Murthy
Nov 27 '18 at 23:48












1 Answer
1






active

oldest

votes


















0














No, $f*g$ need not be integrable. Let $f=1$ on $[0,1],$ $f=0$ elsewhere. Let $p(y)=y.$ Then



$$f*p(x) = int_0^1 1cdot(x-y),dy = x-1/2.$$



The function on the right is not integrable on $mathbb R.$






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016357%2flebesgue-density-f-with-compact-support-polynomial-p-of-degree-k-then-co%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    No, $f*g$ need not be integrable. Let $f=1$ on $[0,1],$ $f=0$ elsewhere. Let $p(y)=y.$ Then



    $$f*p(x) = int_0^1 1cdot(x-y),dy = x-1/2.$$



    The function on the right is not integrable on $mathbb R.$






    share|cite|improve this answer


























      0














      No, $f*g$ need not be integrable. Let $f=1$ on $[0,1],$ $f=0$ elsewhere. Let $p(y)=y.$ Then



      $$f*p(x) = int_0^1 1cdot(x-y),dy = x-1/2.$$



      The function on the right is not integrable on $mathbb R.$






      share|cite|improve this answer
























        0












        0








        0






        No, $f*g$ need not be integrable. Let $f=1$ on $[0,1],$ $f=0$ elsewhere. Let $p(y)=y.$ Then



        $$f*p(x) = int_0^1 1cdot(x-y),dy = x-1/2.$$



        The function on the right is not integrable on $mathbb R.$






        share|cite|improve this answer












        No, $f*g$ need not be integrable. Let $f=1$ on $[0,1],$ $f=0$ elsewhere. Let $p(y)=y.$ Then



        $$f*p(x) = int_0^1 1cdot(x-y),dy = x-1/2.$$



        The function on the right is not integrable on $mathbb R.$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 27 '18 at 22:42









        zhw.zhw.

        71.8k43075




        71.8k43075






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016357%2flebesgue-density-f-with-compact-support-polynomial-p-of-degree-k-then-co%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa