Error when trying to derive variance of sample mean












0












$begingroup$


Assume that $X$ is a random variable with mean $E[X]$ variance $sigma^2$. Let $mu = frac{1}{N}sum_{n=1}^N X_n$, where $X_n$ is i.i.d with respect to $n$ having mean $E[X]$ and variance $sigma^2$, be an estimator of $E[X]$. I tried to show that $Variance(E[X] - mu) = frac{sigma^2}{N}$ but I have made some error which I'm blind to... An approach which yields the correct answer can be found at
http://sepwww.stanford.edu/sep/prof/pvi/rand/paper_html/node16.html.



I'm proceeding as follows:
Let $e = E[X]-mu$ then
begin{align}
Variance(e) &= E[(e -E[e])^2] \
&= E[e^2] - E[e]^2 \
&= E[e^2] & text{unbiased estimator} \
&= E[(E[X]-mu)^2] \
&= E[E[X]^2 - E[X]mu + mu^2] \
&= E[mu^2] - E[X]^2 & text{since }E[mu] = E[X] \
&= Eleft[left(frac{1}{N}sum_{n=1}^N X_nright)^2right] - E[X]^2 \
&= Eleft[frac{1}{N^2}sum_{m=1}^Nsum_{n=1}^N X_m X_nright] - E[X]^2 \
&= left(frac{1}{N^2}sum_{m=1}^Nsum_{n=1}^N E[X_m X_n]right) - E[X]^2 \
&= left(frac{1}{N^2}sum_{n=1}^N E[X_n^2]right) - E[X]^2 & text{due to independence} \
&= left(frac{1}{N^2}sum_{n=1}^N E[X^2]right) - E[X]^2 & text{from assumption on distr. of $X_n$} \
&= frac{1}{N} E[X^2] - E[X]^2 \
&= frac{1}{N} E[X^2] - E[X]^2 \
&= frac{1}{N} (sigma^2 + E[X]^2) - E[X]^2 \
&= frac{sigma^2}{N} + (frac{1}{N} - 1) E[X]^2 \
end{align}



EDIT:
Correcting the error pointed out by NCh gives the correct answer. Continuing from the 9th row
begin{align}
&= left(frac{1}{N^2}sum_{m=1}^Nsum_{n=1}^N E[X_m X_n]right) - E[X]^2 \
&= frac{1}{N^2}left(left(sum_{n=1}^N E[X_n^2]right) + left(sum_{m=1}^Nsum_{nin{1,dots,N}-{m}} E[X_m]E[X_n]right)right) - E[X]^2 & text{due to independence} \
&= frac{1}{N^2}left(left(sum_{n=1}^N E[X^2]right) + left(sum_{m=1}^Nsum_{nin{1,dots,N}-{m}} E[X]^2right)right) - E[X]^2 & text{from assumption on distr. of $X_n$} \
&= frac{1}{N^2}(NE[X^2] + N(N-1)E[X]^2) - E[X] \
&= frac{1}{N}(E[X^2] - E[X]^2) \
&= frac{sigma^2}{N} \
end{align}










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Assume that $X$ is a random variable with mean $E[X]$ variance $sigma^2$. Let $mu = frac{1}{N}sum_{n=1}^N X_n$, where $X_n$ is i.i.d with respect to $n$ having mean $E[X]$ and variance $sigma^2$, be an estimator of $E[X]$. I tried to show that $Variance(E[X] - mu) = frac{sigma^2}{N}$ but I have made some error which I'm blind to... An approach which yields the correct answer can be found at
    http://sepwww.stanford.edu/sep/prof/pvi/rand/paper_html/node16.html.



    I'm proceeding as follows:
    Let $e = E[X]-mu$ then
    begin{align}
    Variance(e) &= E[(e -E[e])^2] \
    &= E[e^2] - E[e]^2 \
    &= E[e^2] & text{unbiased estimator} \
    &= E[(E[X]-mu)^2] \
    &= E[E[X]^2 - E[X]mu + mu^2] \
    &= E[mu^2] - E[X]^2 & text{since }E[mu] = E[X] \
    &= Eleft[left(frac{1}{N}sum_{n=1}^N X_nright)^2right] - E[X]^2 \
    &= Eleft[frac{1}{N^2}sum_{m=1}^Nsum_{n=1}^N X_m X_nright] - E[X]^2 \
    &= left(frac{1}{N^2}sum_{m=1}^Nsum_{n=1}^N E[X_m X_n]right) - E[X]^2 \
    &= left(frac{1}{N^2}sum_{n=1}^N E[X_n^2]right) - E[X]^2 & text{due to independence} \
    &= left(frac{1}{N^2}sum_{n=1}^N E[X^2]right) - E[X]^2 & text{from assumption on distr. of $X_n$} \
    &= frac{1}{N} E[X^2] - E[X]^2 \
    &= frac{1}{N} E[X^2] - E[X]^2 \
    &= frac{1}{N} (sigma^2 + E[X]^2) - E[X]^2 \
    &= frac{sigma^2}{N} + (frac{1}{N} - 1) E[X]^2 \
    end{align}



    EDIT:
    Correcting the error pointed out by NCh gives the correct answer. Continuing from the 9th row
    begin{align}
    &= left(frac{1}{N^2}sum_{m=1}^Nsum_{n=1}^N E[X_m X_n]right) - E[X]^2 \
    &= frac{1}{N^2}left(left(sum_{n=1}^N E[X_n^2]right) + left(sum_{m=1}^Nsum_{nin{1,dots,N}-{m}} E[X_m]E[X_n]right)right) - E[X]^2 & text{due to independence} \
    &= frac{1}{N^2}left(left(sum_{n=1}^N E[X^2]right) + left(sum_{m=1}^Nsum_{nin{1,dots,N}-{m}} E[X]^2right)right) - E[X]^2 & text{from assumption on distr. of $X_n$} \
    &= frac{1}{N^2}(NE[X^2] + N(N-1)E[X]^2) - E[X] \
    &= frac{1}{N}(E[X^2] - E[X]^2) \
    &= frac{sigma^2}{N} \
    end{align}










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Assume that $X$ is a random variable with mean $E[X]$ variance $sigma^2$. Let $mu = frac{1}{N}sum_{n=1}^N X_n$, where $X_n$ is i.i.d with respect to $n$ having mean $E[X]$ and variance $sigma^2$, be an estimator of $E[X]$. I tried to show that $Variance(E[X] - mu) = frac{sigma^2}{N}$ but I have made some error which I'm blind to... An approach which yields the correct answer can be found at
      http://sepwww.stanford.edu/sep/prof/pvi/rand/paper_html/node16.html.



      I'm proceeding as follows:
      Let $e = E[X]-mu$ then
      begin{align}
      Variance(e) &= E[(e -E[e])^2] \
      &= E[e^2] - E[e]^2 \
      &= E[e^2] & text{unbiased estimator} \
      &= E[(E[X]-mu)^2] \
      &= E[E[X]^2 - E[X]mu + mu^2] \
      &= E[mu^2] - E[X]^2 & text{since }E[mu] = E[X] \
      &= Eleft[left(frac{1}{N}sum_{n=1}^N X_nright)^2right] - E[X]^2 \
      &= Eleft[frac{1}{N^2}sum_{m=1}^Nsum_{n=1}^N X_m X_nright] - E[X]^2 \
      &= left(frac{1}{N^2}sum_{m=1}^Nsum_{n=1}^N E[X_m X_n]right) - E[X]^2 \
      &= left(frac{1}{N^2}sum_{n=1}^N E[X_n^2]right) - E[X]^2 & text{due to independence} \
      &= left(frac{1}{N^2}sum_{n=1}^N E[X^2]right) - E[X]^2 & text{from assumption on distr. of $X_n$} \
      &= frac{1}{N} E[X^2] - E[X]^2 \
      &= frac{1}{N} E[X^2] - E[X]^2 \
      &= frac{1}{N} (sigma^2 + E[X]^2) - E[X]^2 \
      &= frac{sigma^2}{N} + (frac{1}{N} - 1) E[X]^2 \
      end{align}



      EDIT:
      Correcting the error pointed out by NCh gives the correct answer. Continuing from the 9th row
      begin{align}
      &= left(frac{1}{N^2}sum_{m=1}^Nsum_{n=1}^N E[X_m X_n]right) - E[X]^2 \
      &= frac{1}{N^2}left(left(sum_{n=1}^N E[X_n^2]right) + left(sum_{m=1}^Nsum_{nin{1,dots,N}-{m}} E[X_m]E[X_n]right)right) - E[X]^2 & text{due to independence} \
      &= frac{1}{N^2}left(left(sum_{n=1}^N E[X^2]right) + left(sum_{m=1}^Nsum_{nin{1,dots,N}-{m}} E[X]^2right)right) - E[X]^2 & text{from assumption on distr. of $X_n$} \
      &= frac{1}{N^2}(NE[X^2] + N(N-1)E[X]^2) - E[X] \
      &= frac{1}{N}(E[X^2] - E[X]^2) \
      &= frac{sigma^2}{N} \
      end{align}










      share|cite|improve this question











      $endgroup$




      Assume that $X$ is a random variable with mean $E[X]$ variance $sigma^2$. Let $mu = frac{1}{N}sum_{n=1}^N X_n$, where $X_n$ is i.i.d with respect to $n$ having mean $E[X]$ and variance $sigma^2$, be an estimator of $E[X]$. I tried to show that $Variance(E[X] - mu) = frac{sigma^2}{N}$ but I have made some error which I'm blind to... An approach which yields the correct answer can be found at
      http://sepwww.stanford.edu/sep/prof/pvi/rand/paper_html/node16.html.



      I'm proceeding as follows:
      Let $e = E[X]-mu$ then
      begin{align}
      Variance(e) &= E[(e -E[e])^2] \
      &= E[e^2] - E[e]^2 \
      &= E[e^2] & text{unbiased estimator} \
      &= E[(E[X]-mu)^2] \
      &= E[E[X]^2 - E[X]mu + mu^2] \
      &= E[mu^2] - E[X]^2 & text{since }E[mu] = E[X] \
      &= Eleft[left(frac{1}{N}sum_{n=1}^N X_nright)^2right] - E[X]^2 \
      &= Eleft[frac{1}{N^2}sum_{m=1}^Nsum_{n=1}^N X_m X_nright] - E[X]^2 \
      &= left(frac{1}{N^2}sum_{m=1}^Nsum_{n=1}^N E[X_m X_n]right) - E[X]^2 \
      &= left(frac{1}{N^2}sum_{n=1}^N E[X_n^2]right) - E[X]^2 & text{due to independence} \
      &= left(frac{1}{N^2}sum_{n=1}^N E[X^2]right) - E[X]^2 & text{from assumption on distr. of $X_n$} \
      &= frac{1}{N} E[X^2] - E[X]^2 \
      &= frac{1}{N} E[X^2] - E[X]^2 \
      &= frac{1}{N} (sigma^2 + E[X]^2) - E[X]^2 \
      &= frac{sigma^2}{N} + (frac{1}{N} - 1) E[X]^2 \
      end{align}



      EDIT:
      Correcting the error pointed out by NCh gives the correct answer. Continuing from the 9th row
      begin{align}
      &= left(frac{1}{N^2}sum_{m=1}^Nsum_{n=1}^N E[X_m X_n]right) - E[X]^2 \
      &= frac{1}{N^2}left(left(sum_{n=1}^N E[X_n^2]right) + left(sum_{m=1}^Nsum_{nin{1,dots,N}-{m}} E[X_m]E[X_n]right)right) - E[X]^2 & text{due to independence} \
      &= frac{1}{N^2}left(left(sum_{n=1}^N E[X^2]right) + left(sum_{m=1}^Nsum_{nin{1,dots,N}-{m}} E[X]^2right)right) - E[X]^2 & text{from assumption on distr. of $X_n$} \
      &= frac{1}{N^2}(NE[X^2] + N(N-1)E[X]^2) - E[X] \
      &= frac{1}{N}(E[X^2] - E[X]^2) \
      &= frac{sigma^2}{N} \
      end{align}







      probability statistics self-learning estimation expected-value






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 4 '18 at 8:04







      Angelos

















      asked Dec 3 '18 at 14:10









      AngelosAngelos

      788




      788






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          An error is when you went from 9th to 10th raw:
          $$mathbb E[X_m X_n]neq mathbb E[X_n^2]$$
          for $mneq n$.



          By independence,
          $$mathbb E[X_m X_n]=mathbb E[X_m]mathbb E[X_n]=mathbb E[X]^2$$



          Note also that by properties of variance,
          $$
          Var(E[X]-mu) = Var(mu) = Varleft(frac{sum_{i=1}^N X_i}{N}right) = frac{1}{N^2} Varleft(sum_{i=1}^N X_iright) = frac{1}{N^2} left(sum_{i=1}^N Var(X_i)right) = frac{N sigma^2}{N^2} = frac{sigma^2}{N}
          $$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024098%2ferror-when-trying-to-derive-variance-of-sample-mean%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            An error is when you went from 9th to 10th raw:
            $$mathbb E[X_m X_n]neq mathbb E[X_n^2]$$
            for $mneq n$.



            By independence,
            $$mathbb E[X_m X_n]=mathbb E[X_m]mathbb E[X_n]=mathbb E[X]^2$$



            Note also that by properties of variance,
            $$
            Var(E[X]-mu) = Var(mu) = Varleft(frac{sum_{i=1}^N X_i}{N}right) = frac{1}{N^2} Varleft(sum_{i=1}^N X_iright) = frac{1}{N^2} left(sum_{i=1}^N Var(X_i)right) = frac{N sigma^2}{N^2} = frac{sigma^2}{N}
            $$






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              An error is when you went from 9th to 10th raw:
              $$mathbb E[X_m X_n]neq mathbb E[X_n^2]$$
              for $mneq n$.



              By independence,
              $$mathbb E[X_m X_n]=mathbb E[X_m]mathbb E[X_n]=mathbb E[X]^2$$



              Note also that by properties of variance,
              $$
              Var(E[X]-mu) = Var(mu) = Varleft(frac{sum_{i=1}^N X_i}{N}right) = frac{1}{N^2} Varleft(sum_{i=1}^N X_iright) = frac{1}{N^2} left(sum_{i=1}^N Var(X_i)right) = frac{N sigma^2}{N^2} = frac{sigma^2}{N}
              $$






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                An error is when you went from 9th to 10th raw:
                $$mathbb E[X_m X_n]neq mathbb E[X_n^2]$$
                for $mneq n$.



                By independence,
                $$mathbb E[X_m X_n]=mathbb E[X_m]mathbb E[X_n]=mathbb E[X]^2$$



                Note also that by properties of variance,
                $$
                Var(E[X]-mu) = Var(mu) = Varleft(frac{sum_{i=1}^N X_i}{N}right) = frac{1}{N^2} Varleft(sum_{i=1}^N X_iright) = frac{1}{N^2} left(sum_{i=1}^N Var(X_i)right) = frac{N sigma^2}{N^2} = frac{sigma^2}{N}
                $$






                share|cite|improve this answer









                $endgroup$



                An error is when you went from 9th to 10th raw:
                $$mathbb E[X_m X_n]neq mathbb E[X_n^2]$$
                for $mneq n$.



                By independence,
                $$mathbb E[X_m X_n]=mathbb E[X_m]mathbb E[X_n]=mathbb E[X]^2$$



                Note also that by properties of variance,
                $$
                Var(E[X]-mu) = Var(mu) = Varleft(frac{sum_{i=1}^N X_i}{N}right) = frac{1}{N^2} Varleft(sum_{i=1}^N X_iright) = frac{1}{N^2} left(sum_{i=1}^N Var(X_i)right) = frac{N sigma^2}{N^2} = frac{sigma^2}{N}
                $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 4 '18 at 3:07









                NChNCh

                6,3832723




                6,3832723






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024098%2ferror-when-trying-to-derive-variance-of-sample-mean%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Plaza Victoria

                    Puebla de Zaragoza

                    Musa