Find all the solutions for $e^z=e^{iz}$
$begingroup$
so iam trying to solve this
$e^z=e^{iz} $
so, since z = x+iy
$ e^{x+iy} = e^{-y+ix} $
so should i take the Log for the two sides ? or what should i do ?!!
I really want the help!
Thanks
calculus complex-analysis complex-numbers
$endgroup$
add a comment |
$begingroup$
so iam trying to solve this
$e^z=e^{iz} $
so, since z = x+iy
$ e^{x+iy} = e^{-y+ix} $
so should i take the Log for the two sides ? or what should i do ?!!
I really want the help!
Thanks
calculus complex-analysis complex-numbers
$endgroup$
$begingroup$
where z is in the form x+iy , where x,y belong to R (real values).
$endgroup$
– Smb Youz
Nov 28 '18 at 18:56
$begingroup$
this is work if z ∈ $Real$ ?
$endgroup$
– Smb Youz
Nov 28 '18 at 19:13
add a comment |
$begingroup$
so iam trying to solve this
$e^z=e^{iz} $
so, since z = x+iy
$ e^{x+iy} = e^{-y+ix} $
so should i take the Log for the two sides ? or what should i do ?!!
I really want the help!
Thanks
calculus complex-analysis complex-numbers
$endgroup$
so iam trying to solve this
$e^z=e^{iz} $
so, since z = x+iy
$ e^{x+iy} = e^{-y+ix} $
so should i take the Log for the two sides ? or what should i do ?!!
I really want the help!
Thanks
calculus complex-analysis complex-numbers
calculus complex-analysis complex-numbers
edited Nov 28 '18 at 18:48
Smb Youz
asked Nov 28 '18 at 18:45
Smb YouzSmb Youz
165
165
$begingroup$
where z is in the form x+iy , where x,y belong to R (real values).
$endgroup$
– Smb Youz
Nov 28 '18 at 18:56
$begingroup$
this is work if z ∈ $Real$ ?
$endgroup$
– Smb Youz
Nov 28 '18 at 19:13
add a comment |
$begingroup$
where z is in the form x+iy , where x,y belong to R (real values).
$endgroup$
– Smb Youz
Nov 28 '18 at 18:56
$begingroup$
this is work if z ∈ $Real$ ?
$endgroup$
– Smb Youz
Nov 28 '18 at 19:13
$begingroup$
where z is in the form x+iy , where x,y belong to R (real values).
$endgroup$
– Smb Youz
Nov 28 '18 at 18:56
$begingroup$
where z is in the form x+iy , where x,y belong to R (real values).
$endgroup$
– Smb Youz
Nov 28 '18 at 18:56
$begingroup$
this is work if z ∈ $Real$ ?
$endgroup$
– Smb Youz
Nov 28 '18 at 19:13
$begingroup$
this is work if z ∈ $Real$ ?
$endgroup$
– Smb Youz
Nov 28 '18 at 19:13
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint:
$$e^{z(1-i)}=1=e^{2mpi i}$$ where $m$ is any integer
$endgroup$
$begingroup$
amazing , so that's is the all solution in order to $e^z=e^{iz} $
$endgroup$
– Smb Youz
Nov 28 '18 at 19:00
$begingroup$
so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
$endgroup$
– Smb Youz
Nov 28 '18 at 19:08
add a comment |
$begingroup$
Notice that $$|e^z|=|e^{iz}|$$therefore $$e^x=e^{-y}$$which leads to $$x=-y$$therefore $$e^z=e^{iz}=e^{x+ix}=e^{x-ix}$$which reduce to $$e^{ix}=e^{-ix}$$hence the solutions are$$x=-y=kpi$$and $$z=kpi (1-i)quad,quad kin Bbb Z$$
$endgroup$
$begingroup$
that's why I am confused lol !!
$endgroup$
– Smb Youz
Nov 28 '18 at 18:50
$begingroup$
Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 18:51
$begingroup$
yes you are right , but what is the solutions ? right !
$endgroup$
– Smb Youz
Nov 28 '18 at 19:10
$begingroup$
that's better sir , thanks
$endgroup$
– Smb Youz
Nov 28 '18 at 19:19
$begingroup$
You're welcome!!
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 20:07
add a comment |
$begingroup$
If $z,winmathbb C$, then $e^z=e^w$ if and only if there is an integer $k$ such that $z=w+2kpi i$. So, when do we have $z-iz=2kpi i$ for some integer $k$?
$endgroup$
$begingroup$
z,w∈R numbers !!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:09
$begingroup$
Why should I suppose that $z,winmathbb R$?
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:11
$begingroup$
The question we are trying to solve giving me this hint !!!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:11
$begingroup$
The question that you are trying to solve has no $w$.
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:12
$begingroup$
i got it sir , thanks alot
$endgroup$
– Smb Youz
Nov 28 '18 at 19:21
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017532%2ffind-all-the-solutions-for-ez-eiz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
$$e^{z(1-i)}=1=e^{2mpi i}$$ where $m$ is any integer
$endgroup$
$begingroup$
amazing , so that's is the all solution in order to $e^z=e^{iz} $
$endgroup$
– Smb Youz
Nov 28 '18 at 19:00
$begingroup$
so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
$endgroup$
– Smb Youz
Nov 28 '18 at 19:08
add a comment |
$begingroup$
Hint:
$$e^{z(1-i)}=1=e^{2mpi i}$$ where $m$ is any integer
$endgroup$
$begingroup$
amazing , so that's is the all solution in order to $e^z=e^{iz} $
$endgroup$
– Smb Youz
Nov 28 '18 at 19:00
$begingroup$
so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
$endgroup$
– Smb Youz
Nov 28 '18 at 19:08
add a comment |
$begingroup$
Hint:
$$e^{z(1-i)}=1=e^{2mpi i}$$ where $m$ is any integer
$endgroup$
Hint:
$$e^{z(1-i)}=1=e^{2mpi i}$$ where $m$ is any integer
answered Nov 28 '18 at 18:47
lab bhattacharjeelab bhattacharjee
224k15156274
224k15156274
$begingroup$
amazing , so that's is the all solution in order to $e^z=e^{iz} $
$endgroup$
– Smb Youz
Nov 28 '18 at 19:00
$begingroup$
so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
$endgroup$
– Smb Youz
Nov 28 '18 at 19:08
add a comment |
$begingroup$
amazing , so that's is the all solution in order to $e^z=e^{iz} $
$endgroup$
– Smb Youz
Nov 28 '18 at 19:00
$begingroup$
so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
$endgroup$
– Smb Youz
Nov 28 '18 at 19:08
$begingroup$
amazing , so that's is the all solution in order to $e^z=e^{iz} $
$endgroup$
– Smb Youz
Nov 28 '18 at 19:00
$begingroup$
amazing , so that's is the all solution in order to $e^z=e^{iz} $
$endgroup$
– Smb Youz
Nov 28 '18 at 19:00
$begingroup$
so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
$endgroup$
– Smb Youz
Nov 28 '18 at 19:08
$begingroup$
so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
$endgroup$
– Smb Youz
Nov 28 '18 at 19:08
add a comment |
$begingroup$
Notice that $$|e^z|=|e^{iz}|$$therefore $$e^x=e^{-y}$$which leads to $$x=-y$$therefore $$e^z=e^{iz}=e^{x+ix}=e^{x-ix}$$which reduce to $$e^{ix}=e^{-ix}$$hence the solutions are$$x=-y=kpi$$and $$z=kpi (1-i)quad,quad kin Bbb Z$$
$endgroup$
$begingroup$
that's why I am confused lol !!
$endgroup$
– Smb Youz
Nov 28 '18 at 18:50
$begingroup$
Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 18:51
$begingroup$
yes you are right , but what is the solutions ? right !
$endgroup$
– Smb Youz
Nov 28 '18 at 19:10
$begingroup$
that's better sir , thanks
$endgroup$
– Smb Youz
Nov 28 '18 at 19:19
$begingroup$
You're welcome!!
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 20:07
add a comment |
$begingroup$
Notice that $$|e^z|=|e^{iz}|$$therefore $$e^x=e^{-y}$$which leads to $$x=-y$$therefore $$e^z=e^{iz}=e^{x+ix}=e^{x-ix}$$which reduce to $$e^{ix}=e^{-ix}$$hence the solutions are$$x=-y=kpi$$and $$z=kpi (1-i)quad,quad kin Bbb Z$$
$endgroup$
$begingroup$
that's why I am confused lol !!
$endgroup$
– Smb Youz
Nov 28 '18 at 18:50
$begingroup$
Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 18:51
$begingroup$
yes you are right , but what is the solutions ? right !
$endgroup$
– Smb Youz
Nov 28 '18 at 19:10
$begingroup$
that's better sir , thanks
$endgroup$
– Smb Youz
Nov 28 '18 at 19:19
$begingroup$
You're welcome!!
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 20:07
add a comment |
$begingroup$
Notice that $$|e^z|=|e^{iz}|$$therefore $$e^x=e^{-y}$$which leads to $$x=-y$$therefore $$e^z=e^{iz}=e^{x+ix}=e^{x-ix}$$which reduce to $$e^{ix}=e^{-ix}$$hence the solutions are$$x=-y=kpi$$and $$z=kpi (1-i)quad,quad kin Bbb Z$$
$endgroup$
Notice that $$|e^z|=|e^{iz}|$$therefore $$e^x=e^{-y}$$which leads to $$x=-y$$therefore $$e^z=e^{iz}=e^{x+ix}=e^{x-ix}$$which reduce to $$e^{ix}=e^{-ix}$$hence the solutions are$$x=-y=kpi$$and $$z=kpi (1-i)quad,quad kin Bbb Z$$
edited Nov 28 '18 at 19:15
answered Nov 28 '18 at 18:48
Mostafa AyazMostafa Ayaz
14.8k3938
14.8k3938
$begingroup$
that's why I am confused lol !!
$endgroup$
– Smb Youz
Nov 28 '18 at 18:50
$begingroup$
Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 18:51
$begingroup$
yes you are right , but what is the solutions ? right !
$endgroup$
– Smb Youz
Nov 28 '18 at 19:10
$begingroup$
that's better sir , thanks
$endgroup$
– Smb Youz
Nov 28 '18 at 19:19
$begingroup$
You're welcome!!
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 20:07
add a comment |
$begingroup$
that's why I am confused lol !!
$endgroup$
– Smb Youz
Nov 28 '18 at 18:50
$begingroup$
Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 18:51
$begingroup$
yes you are right , but what is the solutions ? right !
$endgroup$
– Smb Youz
Nov 28 '18 at 19:10
$begingroup$
that's better sir , thanks
$endgroup$
– Smb Youz
Nov 28 '18 at 19:19
$begingroup$
You're welcome!!
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 20:07
$begingroup$
that's why I am confused lol !!
$endgroup$
– Smb Youz
Nov 28 '18 at 18:50
$begingroup$
that's why I am confused lol !!
$endgroup$
– Smb Youz
Nov 28 '18 at 18:50
$begingroup$
Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 18:51
$begingroup$
Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 18:51
$begingroup$
yes you are right , but what is the solutions ? right !
$endgroup$
– Smb Youz
Nov 28 '18 at 19:10
$begingroup$
yes you are right , but what is the solutions ? right !
$endgroup$
– Smb Youz
Nov 28 '18 at 19:10
$begingroup$
that's better sir , thanks
$endgroup$
– Smb Youz
Nov 28 '18 at 19:19
$begingroup$
that's better sir , thanks
$endgroup$
– Smb Youz
Nov 28 '18 at 19:19
$begingroup$
You're welcome!!
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 20:07
$begingroup$
You're welcome!!
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 20:07
add a comment |
$begingroup$
If $z,winmathbb C$, then $e^z=e^w$ if and only if there is an integer $k$ such that $z=w+2kpi i$. So, when do we have $z-iz=2kpi i$ for some integer $k$?
$endgroup$
$begingroup$
z,w∈R numbers !!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:09
$begingroup$
Why should I suppose that $z,winmathbb R$?
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:11
$begingroup$
The question we are trying to solve giving me this hint !!!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:11
$begingroup$
The question that you are trying to solve has no $w$.
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:12
$begingroup$
i got it sir , thanks alot
$endgroup$
– Smb Youz
Nov 28 '18 at 19:21
add a comment |
$begingroup$
If $z,winmathbb C$, then $e^z=e^w$ if and only if there is an integer $k$ such that $z=w+2kpi i$. So, when do we have $z-iz=2kpi i$ for some integer $k$?
$endgroup$
$begingroup$
z,w∈R numbers !!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:09
$begingroup$
Why should I suppose that $z,winmathbb R$?
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:11
$begingroup$
The question we are trying to solve giving me this hint !!!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:11
$begingroup$
The question that you are trying to solve has no $w$.
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:12
$begingroup$
i got it sir , thanks alot
$endgroup$
– Smb Youz
Nov 28 '18 at 19:21
add a comment |
$begingroup$
If $z,winmathbb C$, then $e^z=e^w$ if and only if there is an integer $k$ such that $z=w+2kpi i$. So, when do we have $z-iz=2kpi i$ for some integer $k$?
$endgroup$
If $z,winmathbb C$, then $e^z=e^w$ if and only if there is an integer $k$ such that $z=w+2kpi i$. So, when do we have $z-iz=2kpi i$ for some integer $k$?
answered Nov 28 '18 at 18:48
José Carlos SantosJosé Carlos Santos
153k22123225
153k22123225
$begingroup$
z,w∈R numbers !!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:09
$begingroup$
Why should I suppose that $z,winmathbb R$?
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:11
$begingroup$
The question we are trying to solve giving me this hint !!!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:11
$begingroup$
The question that you are trying to solve has no $w$.
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:12
$begingroup$
i got it sir , thanks alot
$endgroup$
– Smb Youz
Nov 28 '18 at 19:21
add a comment |
$begingroup$
z,w∈R numbers !!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:09
$begingroup$
Why should I suppose that $z,winmathbb R$?
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:11
$begingroup$
The question we are trying to solve giving me this hint !!!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:11
$begingroup$
The question that you are trying to solve has no $w$.
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:12
$begingroup$
i got it sir , thanks alot
$endgroup$
– Smb Youz
Nov 28 '18 at 19:21
$begingroup$
z,w∈R numbers !!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:09
$begingroup$
z,w∈R numbers !!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:09
$begingroup$
Why should I suppose that $z,winmathbb R$?
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:11
$begingroup$
Why should I suppose that $z,winmathbb R$?
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:11
$begingroup$
The question we are trying to solve giving me this hint !!!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:11
$begingroup$
The question we are trying to solve giving me this hint !!!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:11
$begingroup$
The question that you are trying to solve has no $w$.
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:12
$begingroup$
The question that you are trying to solve has no $w$.
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:12
$begingroup$
i got it sir , thanks alot
$endgroup$
– Smb Youz
Nov 28 '18 at 19:21
$begingroup$
i got it sir , thanks alot
$endgroup$
– Smb Youz
Nov 28 '18 at 19:21
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017532%2ffind-all-the-solutions-for-ez-eiz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
where z is in the form x+iy , where x,y belong to R (real values).
$endgroup$
– Smb Youz
Nov 28 '18 at 18:56
$begingroup$
this is work if z ∈ $Real$ ?
$endgroup$
– Smb Youz
Nov 28 '18 at 19:13