Find all the solutions for $e^z=e^{iz}$












0












$begingroup$


so iam trying to solve this



$e^z=e^{iz} $



so, since z = x+iy



$ e^{x+iy} = e^{-y+ix} $



so should i take the Log for the two sides ? or what should i do ?!!



I really want the help!



Thanks










share|cite|improve this question











$endgroup$












  • $begingroup$
    where z is in the form x+iy , where x,y belong to R (real values).
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 18:56










  • $begingroup$
    this is work if z ∈ $Real$ ?
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:13


















0












$begingroup$


so iam trying to solve this



$e^z=e^{iz} $



so, since z = x+iy



$ e^{x+iy} = e^{-y+ix} $



so should i take the Log for the two sides ? or what should i do ?!!



I really want the help!



Thanks










share|cite|improve this question











$endgroup$












  • $begingroup$
    where z is in the form x+iy , where x,y belong to R (real values).
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 18:56










  • $begingroup$
    this is work if z ∈ $Real$ ?
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:13
















0












0








0





$begingroup$


so iam trying to solve this



$e^z=e^{iz} $



so, since z = x+iy



$ e^{x+iy} = e^{-y+ix} $



so should i take the Log for the two sides ? or what should i do ?!!



I really want the help!



Thanks










share|cite|improve this question











$endgroup$




so iam trying to solve this



$e^z=e^{iz} $



so, since z = x+iy



$ e^{x+iy} = e^{-y+ix} $



so should i take the Log for the two sides ? or what should i do ?!!



I really want the help!



Thanks







calculus complex-analysis complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 28 '18 at 18:48







Smb Youz

















asked Nov 28 '18 at 18:45









Smb YouzSmb Youz

165




165












  • $begingroup$
    where z is in the form x+iy , where x,y belong to R (real values).
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 18:56










  • $begingroup$
    this is work if z ∈ $Real$ ?
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:13




















  • $begingroup$
    where z is in the form x+iy , where x,y belong to R (real values).
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 18:56










  • $begingroup$
    this is work if z ∈ $Real$ ?
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:13


















$begingroup$
where z is in the form x+iy , where x,y belong to R (real values).
$endgroup$
– Smb Youz
Nov 28 '18 at 18:56




$begingroup$
where z is in the form x+iy , where x,y belong to R (real values).
$endgroup$
– Smb Youz
Nov 28 '18 at 18:56












$begingroup$
this is work if z ∈ $Real$ ?
$endgroup$
– Smb Youz
Nov 28 '18 at 19:13






$begingroup$
this is work if z ∈ $Real$ ?
$endgroup$
– Smb Youz
Nov 28 '18 at 19:13












3 Answers
3






active

oldest

votes


















1












$begingroup$

Hint:



$$e^{z(1-i)}=1=e^{2mpi i}$$ where $m$ is any integer






share|cite|improve this answer









$endgroup$













  • $begingroup$
    amazing , so that's is the all solution in order to $e^z=e^{iz} $
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:00












  • $begingroup$
    so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:08



















1












$begingroup$

Notice that $$|e^z|=|e^{iz}|$$therefore $$e^x=e^{-y}$$which leads to $$x=-y$$therefore $$e^z=e^{iz}=e^{x+ix}=e^{x-ix}$$which reduce to $$e^{ix}=e^{-ix}$$hence the solutions are$$x=-y=kpi$$and $$z=kpi (1-i)quad,quad kin Bbb Z$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    that's why I am confused lol !!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 18:50










  • $begingroup$
    Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
    $endgroup$
    – Mostafa Ayaz
    Nov 28 '18 at 18:51












  • $begingroup$
    yes you are right , but what is the solutions ? right !
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:10










  • $begingroup$
    that's better sir , thanks
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:19












  • $begingroup$
    You're welcome!!
    $endgroup$
    – Mostafa Ayaz
    Nov 28 '18 at 20:07



















0












$begingroup$

If $z,winmathbb C$, then $e^z=e^w$ if and only if there is an integer $k$ such that $z=w+2kpi i$. So, when do we have $z-iz=2kpi i$ for some integer $k$?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    z,w∈R numbers !!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:09










  • $begingroup$
    Why should I suppose that $z,winmathbb R$?
    $endgroup$
    – José Carlos Santos
    Nov 28 '18 at 19:11










  • $begingroup$
    The question we are trying to solve giving me this hint !!!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:11












  • $begingroup$
    The question that you are trying to solve has no $w$.
    $endgroup$
    – José Carlos Santos
    Nov 28 '18 at 19:12










  • $begingroup$
    i got it sir , thanks alot
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:21











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017532%2ffind-all-the-solutions-for-ez-eiz%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Hint:



$$e^{z(1-i)}=1=e^{2mpi i}$$ where $m$ is any integer






share|cite|improve this answer









$endgroup$













  • $begingroup$
    amazing , so that's is the all solution in order to $e^z=e^{iz} $
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:00












  • $begingroup$
    so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:08
















1












$begingroup$

Hint:



$$e^{z(1-i)}=1=e^{2mpi i}$$ where $m$ is any integer






share|cite|improve this answer









$endgroup$













  • $begingroup$
    amazing , so that's is the all solution in order to $e^z=e^{iz} $
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:00












  • $begingroup$
    so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:08














1












1








1





$begingroup$

Hint:



$$e^{z(1-i)}=1=e^{2mpi i}$$ where $m$ is any integer






share|cite|improve this answer









$endgroup$



Hint:



$$e^{z(1-i)}=1=e^{2mpi i}$$ where $m$ is any integer







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 28 '18 at 18:47









lab bhattacharjeelab bhattacharjee

224k15156274




224k15156274












  • $begingroup$
    amazing , so that's is the all solution in order to $e^z=e^{iz} $
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:00












  • $begingroup$
    so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:08


















  • $begingroup$
    amazing , so that's is the all solution in order to $e^z=e^{iz} $
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:00












  • $begingroup$
    so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:08
















$begingroup$
amazing , so that's is the all solution in order to $e^z=e^{iz} $
$endgroup$
– Smb Youz
Nov 28 '18 at 19:00






$begingroup$
amazing , so that's is the all solution in order to $e^z=e^{iz} $
$endgroup$
– Smb Youz
Nov 28 '18 at 19:00














$begingroup$
so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
$endgroup$
– Smb Youz
Nov 28 '18 at 19:08




$begingroup$
so i should continue as follow (x+iy)(1-i)=2m$pi$i ??
$endgroup$
– Smb Youz
Nov 28 '18 at 19:08











1












$begingroup$

Notice that $$|e^z|=|e^{iz}|$$therefore $$e^x=e^{-y}$$which leads to $$x=-y$$therefore $$e^z=e^{iz}=e^{x+ix}=e^{x-ix}$$which reduce to $$e^{ix}=e^{-ix}$$hence the solutions are$$x=-y=kpi$$and $$z=kpi (1-i)quad,quad kin Bbb Z$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    that's why I am confused lol !!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 18:50










  • $begingroup$
    Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
    $endgroup$
    – Mostafa Ayaz
    Nov 28 '18 at 18:51












  • $begingroup$
    yes you are right , but what is the solutions ? right !
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:10










  • $begingroup$
    that's better sir , thanks
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:19












  • $begingroup$
    You're welcome!!
    $endgroup$
    – Mostafa Ayaz
    Nov 28 '18 at 20:07
















1












$begingroup$

Notice that $$|e^z|=|e^{iz}|$$therefore $$e^x=e^{-y}$$which leads to $$x=-y$$therefore $$e^z=e^{iz}=e^{x+ix}=e^{x-ix}$$which reduce to $$e^{ix}=e^{-ix}$$hence the solutions are$$x=-y=kpi$$and $$z=kpi (1-i)quad,quad kin Bbb Z$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    that's why I am confused lol !!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 18:50










  • $begingroup$
    Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
    $endgroup$
    – Mostafa Ayaz
    Nov 28 '18 at 18:51












  • $begingroup$
    yes you are right , but what is the solutions ? right !
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:10










  • $begingroup$
    that's better sir , thanks
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:19












  • $begingroup$
    You're welcome!!
    $endgroup$
    – Mostafa Ayaz
    Nov 28 '18 at 20:07














1












1








1





$begingroup$

Notice that $$|e^z|=|e^{iz}|$$therefore $$e^x=e^{-y}$$which leads to $$x=-y$$therefore $$e^z=e^{iz}=e^{x+ix}=e^{x-ix}$$which reduce to $$e^{ix}=e^{-ix}$$hence the solutions are$$x=-y=kpi$$and $$z=kpi (1-i)quad,quad kin Bbb Z$$






share|cite|improve this answer











$endgroup$



Notice that $$|e^z|=|e^{iz}|$$therefore $$e^x=e^{-y}$$which leads to $$x=-y$$therefore $$e^z=e^{iz}=e^{x+ix}=e^{x-ix}$$which reduce to $$e^{ix}=e^{-ix}$$hence the solutions are$$x=-y=kpi$$and $$z=kpi (1-i)quad,quad kin Bbb Z$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Nov 28 '18 at 19:15

























answered Nov 28 '18 at 18:48









Mostafa AyazMostafa Ayaz

14.8k3938




14.8k3938












  • $begingroup$
    that's why I am confused lol !!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 18:50










  • $begingroup$
    Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
    $endgroup$
    – Mostafa Ayaz
    Nov 28 '18 at 18:51












  • $begingroup$
    yes you are right , but what is the solutions ? right !
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:10










  • $begingroup$
    that's better sir , thanks
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:19












  • $begingroup$
    You're welcome!!
    $endgroup$
    – Mostafa Ayaz
    Nov 28 '18 at 20:07


















  • $begingroup$
    that's why I am confused lol !!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 18:50










  • $begingroup$
    Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
    $endgroup$
    – Mostafa Ayaz
    Nov 28 '18 at 18:51












  • $begingroup$
    yes you are right , but what is the solutions ? right !
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:10










  • $begingroup$
    that's better sir , thanks
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:19












  • $begingroup$
    You're welcome!!
    $endgroup$
    – Mostafa Ayaz
    Nov 28 '18 at 20:07
















$begingroup$
that's why I am confused lol !!
$endgroup$
– Smb Youz
Nov 28 '18 at 18:50




$begingroup$
that's why I am confused lol !!
$endgroup$
– Smb Youz
Nov 28 '18 at 18:50












$begingroup$
Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 18:51






$begingroup$
Why then? If two complex numbers are equal, so are their absolute values while the angles do not need to be so.
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 18:51














$begingroup$
yes you are right , but what is the solutions ? right !
$endgroup$
– Smb Youz
Nov 28 '18 at 19:10




$begingroup$
yes you are right , but what is the solutions ? right !
$endgroup$
– Smb Youz
Nov 28 '18 at 19:10












$begingroup$
that's better sir , thanks
$endgroup$
– Smb Youz
Nov 28 '18 at 19:19






$begingroup$
that's better sir , thanks
$endgroup$
– Smb Youz
Nov 28 '18 at 19:19














$begingroup$
You're welcome!!
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 20:07




$begingroup$
You're welcome!!
$endgroup$
– Mostafa Ayaz
Nov 28 '18 at 20:07











0












$begingroup$

If $z,winmathbb C$, then $e^z=e^w$ if and only if there is an integer $k$ such that $z=w+2kpi i$. So, when do we have $z-iz=2kpi i$ for some integer $k$?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    z,w∈R numbers !!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:09










  • $begingroup$
    Why should I suppose that $z,winmathbb R$?
    $endgroup$
    – José Carlos Santos
    Nov 28 '18 at 19:11










  • $begingroup$
    The question we are trying to solve giving me this hint !!!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:11












  • $begingroup$
    The question that you are trying to solve has no $w$.
    $endgroup$
    – José Carlos Santos
    Nov 28 '18 at 19:12










  • $begingroup$
    i got it sir , thanks alot
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:21
















0












$begingroup$

If $z,winmathbb C$, then $e^z=e^w$ if and only if there is an integer $k$ such that $z=w+2kpi i$. So, when do we have $z-iz=2kpi i$ for some integer $k$?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    z,w∈R numbers !!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:09










  • $begingroup$
    Why should I suppose that $z,winmathbb R$?
    $endgroup$
    – José Carlos Santos
    Nov 28 '18 at 19:11










  • $begingroup$
    The question we are trying to solve giving me this hint !!!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:11












  • $begingroup$
    The question that you are trying to solve has no $w$.
    $endgroup$
    – José Carlos Santos
    Nov 28 '18 at 19:12










  • $begingroup$
    i got it sir , thanks alot
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:21














0












0








0





$begingroup$

If $z,winmathbb C$, then $e^z=e^w$ if and only if there is an integer $k$ such that $z=w+2kpi i$. So, when do we have $z-iz=2kpi i$ for some integer $k$?






share|cite|improve this answer









$endgroup$



If $z,winmathbb C$, then $e^z=e^w$ if and only if there is an integer $k$ such that $z=w+2kpi i$. So, when do we have $z-iz=2kpi i$ for some integer $k$?







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 28 '18 at 18:48









José Carlos SantosJosé Carlos Santos

153k22123225




153k22123225












  • $begingroup$
    z,w∈R numbers !!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:09










  • $begingroup$
    Why should I suppose that $z,winmathbb R$?
    $endgroup$
    – José Carlos Santos
    Nov 28 '18 at 19:11










  • $begingroup$
    The question we are trying to solve giving me this hint !!!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:11












  • $begingroup$
    The question that you are trying to solve has no $w$.
    $endgroup$
    – José Carlos Santos
    Nov 28 '18 at 19:12










  • $begingroup$
    i got it sir , thanks alot
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:21


















  • $begingroup$
    z,w∈R numbers !!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:09










  • $begingroup$
    Why should I suppose that $z,winmathbb R$?
    $endgroup$
    – José Carlos Santos
    Nov 28 '18 at 19:11










  • $begingroup$
    The question we are trying to solve giving me this hint !!!
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:11












  • $begingroup$
    The question that you are trying to solve has no $w$.
    $endgroup$
    – José Carlos Santos
    Nov 28 '18 at 19:12










  • $begingroup$
    i got it sir , thanks alot
    $endgroup$
    – Smb Youz
    Nov 28 '18 at 19:21
















$begingroup$
z,w∈R numbers !!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:09




$begingroup$
z,w∈R numbers !!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:09












$begingroup$
Why should I suppose that $z,winmathbb R$?
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:11




$begingroup$
Why should I suppose that $z,winmathbb R$?
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:11












$begingroup$
The question we are trying to solve giving me this hint !!!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:11






$begingroup$
The question we are trying to solve giving me this hint !!!
$endgroup$
– Smb Youz
Nov 28 '18 at 19:11














$begingroup$
The question that you are trying to solve has no $w$.
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:12




$begingroup$
The question that you are trying to solve has no $w$.
$endgroup$
– José Carlos Santos
Nov 28 '18 at 19:12












$begingroup$
i got it sir , thanks alot
$endgroup$
– Smb Youz
Nov 28 '18 at 19:21




$begingroup$
i got it sir , thanks alot
$endgroup$
– Smb Youz
Nov 28 '18 at 19:21


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017532%2ffind-all-the-solutions-for-ez-eiz%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa