Computing marginal PDF given joint pdf
$begingroup$
Let the joint PDF of $(X, Y)$ be given by
$$f(x, y) = frac{2}{x} e^{-2x}, hspace{1cm} x>0, 0 leq y< x. $$
a) Find the marginal PDF of $X$ and find $mathbb{E}[X]$
b) Find the conditional pdf of $Y$ given $X = x$
c) Compute $text{Cov}(X, Y)$.
MY try:
a)
$$f_{X}(x) = int_{-infty}^{infty} f(x, y) mathop{dy} = int_{0}^{x} frac{2}{x}e^{-2x} mathop{dy}$$
$$ = boxed{2e^{-2x} hspace{1cm} text{ for } x > 0}$$
Also,
$$mathbb{E}[X] = int_{-infty}^{infty} x cdot f_{X}(x) mathop{dx} = int_{0}^{infty} 2xe^{-2x} mathop{dx} = boxed{frac{1}{2}}$$
b)
$$f_{Y mid X}(y mid x) = frac{f(x, y)}{f_{X}(x)} = boxed{frac{1}{x} text{ for } x > 0, x neq 0}$$
c)
$$text{Cov}(X,Y) = mathbb{E}[XY] - mathbb{E}[X]cdot mathbb{E}[Y]. $$
First, compute $mathbb{E}[Y]$ as follows:
$$mathbb{E}[Y] = mathbb{E}[mathbb{E}[Y mid X]] = mathbb{E}[frac{X}{2}] = frac{1}{2} cdot mathbb{E}[X] = frac{1}{4}$$
Now compute $mathbb{E}[XY]$:
$$mathbb{E}[XY] = int_{0}^{infty} int_{0}^{x} 2ye^{-2x} mathop{dy} mathop{dx} $$
$$ = int_{0}^{infty} x^{2}e^{-2x} mathop{dx}$$
$$= mathbb{E}[X^{2}]/2.$$
Recall we have $text{Var}(X) = 1/lambda^{2}$, which means $mathbb{E}[X^{2}] = mathbb{E}[X]^{2} + text{Var}(X) = frac{2}{lambda^{2}}$. Therefore,
$$text{Cov}(X, Y) = frac{1}{4} - frac{1}{8} = boxed{frac{1}{8}} $$
Are all of these answers correct? I'm unsure about the domains to be honest for (a) and (b).
probability probability-theory probability-distributions
$endgroup$
add a comment |
$begingroup$
Let the joint PDF of $(X, Y)$ be given by
$$f(x, y) = frac{2}{x} e^{-2x}, hspace{1cm} x>0, 0 leq y< x. $$
a) Find the marginal PDF of $X$ and find $mathbb{E}[X]$
b) Find the conditional pdf of $Y$ given $X = x$
c) Compute $text{Cov}(X, Y)$.
MY try:
a)
$$f_{X}(x) = int_{-infty}^{infty} f(x, y) mathop{dy} = int_{0}^{x} frac{2}{x}e^{-2x} mathop{dy}$$
$$ = boxed{2e^{-2x} hspace{1cm} text{ for } x > 0}$$
Also,
$$mathbb{E}[X] = int_{-infty}^{infty} x cdot f_{X}(x) mathop{dx} = int_{0}^{infty} 2xe^{-2x} mathop{dx} = boxed{frac{1}{2}}$$
b)
$$f_{Y mid X}(y mid x) = frac{f(x, y)}{f_{X}(x)} = boxed{frac{1}{x} text{ for } x > 0, x neq 0}$$
c)
$$text{Cov}(X,Y) = mathbb{E}[XY] - mathbb{E}[X]cdot mathbb{E}[Y]. $$
First, compute $mathbb{E}[Y]$ as follows:
$$mathbb{E}[Y] = mathbb{E}[mathbb{E}[Y mid X]] = mathbb{E}[frac{X}{2}] = frac{1}{2} cdot mathbb{E}[X] = frac{1}{4}$$
Now compute $mathbb{E}[XY]$:
$$mathbb{E}[XY] = int_{0}^{infty} int_{0}^{x} 2ye^{-2x} mathop{dy} mathop{dx} $$
$$ = int_{0}^{infty} x^{2}e^{-2x} mathop{dx}$$
$$= mathbb{E}[X^{2}]/2.$$
Recall we have $text{Var}(X) = 1/lambda^{2}$, which means $mathbb{E}[X^{2}] = mathbb{E}[X]^{2} + text{Var}(X) = frac{2}{lambda^{2}}$. Therefore,
$$text{Cov}(X, Y) = frac{1}{4} - frac{1}{8} = boxed{frac{1}{8}} $$
Are all of these answers correct? I'm unsure about the domains to be honest for (a) and (b).
probability probability-theory probability-distributions
$endgroup$
$begingroup$
(a) $E(X)$ is wrong. It should be $int_0^infty 2xe^{-2x}dx=frac{1}{2}$.
$endgroup$
– herb steinberg
Dec 13 '18 at 3:12
add a comment |
$begingroup$
Let the joint PDF of $(X, Y)$ be given by
$$f(x, y) = frac{2}{x} e^{-2x}, hspace{1cm} x>0, 0 leq y< x. $$
a) Find the marginal PDF of $X$ and find $mathbb{E}[X]$
b) Find the conditional pdf of $Y$ given $X = x$
c) Compute $text{Cov}(X, Y)$.
MY try:
a)
$$f_{X}(x) = int_{-infty}^{infty} f(x, y) mathop{dy} = int_{0}^{x} frac{2}{x}e^{-2x} mathop{dy}$$
$$ = boxed{2e^{-2x} hspace{1cm} text{ for } x > 0}$$
Also,
$$mathbb{E}[X] = int_{-infty}^{infty} x cdot f_{X}(x) mathop{dx} = int_{0}^{infty} 2xe^{-2x} mathop{dx} = boxed{frac{1}{2}}$$
b)
$$f_{Y mid X}(y mid x) = frac{f(x, y)}{f_{X}(x)} = boxed{frac{1}{x} text{ for } x > 0, x neq 0}$$
c)
$$text{Cov}(X,Y) = mathbb{E}[XY] - mathbb{E}[X]cdot mathbb{E}[Y]. $$
First, compute $mathbb{E}[Y]$ as follows:
$$mathbb{E}[Y] = mathbb{E}[mathbb{E}[Y mid X]] = mathbb{E}[frac{X}{2}] = frac{1}{2} cdot mathbb{E}[X] = frac{1}{4}$$
Now compute $mathbb{E}[XY]$:
$$mathbb{E}[XY] = int_{0}^{infty} int_{0}^{x} 2ye^{-2x} mathop{dy} mathop{dx} $$
$$ = int_{0}^{infty} x^{2}e^{-2x} mathop{dx}$$
$$= mathbb{E}[X^{2}]/2.$$
Recall we have $text{Var}(X) = 1/lambda^{2}$, which means $mathbb{E}[X^{2}] = mathbb{E}[X]^{2} + text{Var}(X) = frac{2}{lambda^{2}}$. Therefore,
$$text{Cov}(X, Y) = frac{1}{4} - frac{1}{8} = boxed{frac{1}{8}} $$
Are all of these answers correct? I'm unsure about the domains to be honest for (a) and (b).
probability probability-theory probability-distributions
$endgroup$
Let the joint PDF of $(X, Y)$ be given by
$$f(x, y) = frac{2}{x} e^{-2x}, hspace{1cm} x>0, 0 leq y< x. $$
a) Find the marginal PDF of $X$ and find $mathbb{E}[X]$
b) Find the conditional pdf of $Y$ given $X = x$
c) Compute $text{Cov}(X, Y)$.
MY try:
a)
$$f_{X}(x) = int_{-infty}^{infty} f(x, y) mathop{dy} = int_{0}^{x} frac{2}{x}e^{-2x} mathop{dy}$$
$$ = boxed{2e^{-2x} hspace{1cm} text{ for } x > 0}$$
Also,
$$mathbb{E}[X] = int_{-infty}^{infty} x cdot f_{X}(x) mathop{dx} = int_{0}^{infty} 2xe^{-2x} mathop{dx} = boxed{frac{1}{2}}$$
b)
$$f_{Y mid X}(y mid x) = frac{f(x, y)}{f_{X}(x)} = boxed{frac{1}{x} text{ for } x > 0, x neq 0}$$
c)
$$text{Cov}(X,Y) = mathbb{E}[XY] - mathbb{E}[X]cdot mathbb{E}[Y]. $$
First, compute $mathbb{E}[Y]$ as follows:
$$mathbb{E}[Y] = mathbb{E}[mathbb{E}[Y mid X]] = mathbb{E}[frac{X}{2}] = frac{1}{2} cdot mathbb{E}[X] = frac{1}{4}$$
Now compute $mathbb{E}[XY]$:
$$mathbb{E}[XY] = int_{0}^{infty} int_{0}^{x} 2ye^{-2x} mathop{dy} mathop{dx} $$
$$ = int_{0}^{infty} x^{2}e^{-2x} mathop{dx}$$
$$= mathbb{E}[X^{2}]/2.$$
Recall we have $text{Var}(X) = 1/lambda^{2}$, which means $mathbb{E}[X^{2}] = mathbb{E}[X]^{2} + text{Var}(X) = frac{2}{lambda^{2}}$. Therefore,
$$text{Cov}(X, Y) = frac{1}{4} - frac{1}{8} = boxed{frac{1}{8}} $$
Are all of these answers correct? I'm unsure about the domains to be honest for (a) and (b).
probability probability-theory probability-distributions
probability probability-theory probability-distributions
edited Dec 13 '18 at 3:19
joseph
asked Dec 13 '18 at 2:53
josephjoseph
496111
496111
$begingroup$
(a) $E(X)$ is wrong. It should be $int_0^infty 2xe^{-2x}dx=frac{1}{2}$.
$endgroup$
– herb steinberg
Dec 13 '18 at 3:12
add a comment |
$begingroup$
(a) $E(X)$ is wrong. It should be $int_0^infty 2xe^{-2x}dx=frac{1}{2}$.
$endgroup$
– herb steinberg
Dec 13 '18 at 3:12
$begingroup$
(a) $E(X)$ is wrong. It should be $int_0^infty 2xe^{-2x}dx=frac{1}{2}$.
$endgroup$
– herb steinberg
Dec 13 '18 at 3:12
$begingroup$
(a) $E(X)$ is wrong. It should be $int_0^infty 2xe^{-2x}dx=frac{1}{2}$.
$endgroup$
– herb steinberg
Dec 13 '18 at 3:12
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Guide:
$E[X], E[Y], E[XY]$ should all be just numbers.
$X$ follows an exponential distribution, the expectation is $frac12$.
begin{align}
E[XY] &= int_0^infty int_0^x 2y e^{-2x} , dy , dx \
&=frac12int_0^infty 2x^2 e^{-2x}, dx \
&= frac12 E[X^2]
end{align}
$endgroup$
$begingroup$
I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
$endgroup$
– joseph
Dec 13 '18 at 3:11
$begingroup$
from $0$ to $infty$, that's where $f_X(x)$ is positive.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:12
$begingroup$
ok let me try again
$endgroup$
– joseph
Dec 13 '18 at 3:12
$begingroup$
ok can you check again?
$endgroup$
– joseph
Dec 13 '18 at 3:20
$begingroup$
seems fine to me.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:23
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037540%2fcomputing-marginal-pdf-given-joint-pdf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Guide:
$E[X], E[Y], E[XY]$ should all be just numbers.
$X$ follows an exponential distribution, the expectation is $frac12$.
begin{align}
E[XY] &= int_0^infty int_0^x 2y e^{-2x} , dy , dx \
&=frac12int_0^infty 2x^2 e^{-2x}, dx \
&= frac12 E[X^2]
end{align}
$endgroup$
$begingroup$
I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
$endgroup$
– joseph
Dec 13 '18 at 3:11
$begingroup$
from $0$ to $infty$, that's where $f_X(x)$ is positive.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:12
$begingroup$
ok let me try again
$endgroup$
– joseph
Dec 13 '18 at 3:12
$begingroup$
ok can you check again?
$endgroup$
– joseph
Dec 13 '18 at 3:20
$begingroup$
seems fine to me.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:23
add a comment |
$begingroup$
Guide:
$E[X], E[Y], E[XY]$ should all be just numbers.
$X$ follows an exponential distribution, the expectation is $frac12$.
begin{align}
E[XY] &= int_0^infty int_0^x 2y e^{-2x} , dy , dx \
&=frac12int_0^infty 2x^2 e^{-2x}, dx \
&= frac12 E[X^2]
end{align}
$endgroup$
$begingroup$
I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
$endgroup$
– joseph
Dec 13 '18 at 3:11
$begingroup$
from $0$ to $infty$, that's where $f_X(x)$ is positive.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:12
$begingroup$
ok let me try again
$endgroup$
– joseph
Dec 13 '18 at 3:12
$begingroup$
ok can you check again?
$endgroup$
– joseph
Dec 13 '18 at 3:20
$begingroup$
seems fine to me.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:23
add a comment |
$begingroup$
Guide:
$E[X], E[Y], E[XY]$ should all be just numbers.
$X$ follows an exponential distribution, the expectation is $frac12$.
begin{align}
E[XY] &= int_0^infty int_0^x 2y e^{-2x} , dy , dx \
&=frac12int_0^infty 2x^2 e^{-2x}, dx \
&= frac12 E[X^2]
end{align}
$endgroup$
Guide:
$E[X], E[Y], E[XY]$ should all be just numbers.
$X$ follows an exponential distribution, the expectation is $frac12$.
begin{align}
E[XY] &= int_0^infty int_0^x 2y e^{-2x} , dy , dx \
&=frac12int_0^infty 2x^2 e^{-2x}, dx \
&= frac12 E[X^2]
end{align}
answered Dec 13 '18 at 3:09
Siong Thye GohSiong Thye Goh
102k1466118
102k1466118
$begingroup$
I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
$endgroup$
– joseph
Dec 13 '18 at 3:11
$begingroup$
from $0$ to $infty$, that's where $f_X(x)$ is positive.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:12
$begingroup$
ok let me try again
$endgroup$
– joseph
Dec 13 '18 at 3:12
$begingroup$
ok can you check again?
$endgroup$
– joseph
Dec 13 '18 at 3:20
$begingroup$
seems fine to me.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:23
add a comment |
$begingroup$
I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
$endgroup$
– joseph
Dec 13 '18 at 3:11
$begingroup$
from $0$ to $infty$, that's where $f_X(x)$ is positive.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:12
$begingroup$
ok let me try again
$endgroup$
– joseph
Dec 13 '18 at 3:12
$begingroup$
ok can you check again?
$endgroup$
– joseph
Dec 13 '18 at 3:20
$begingroup$
seems fine to me.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:23
$begingroup$
I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
$endgroup$
– joseph
Dec 13 '18 at 3:11
$begingroup$
I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
$endgroup$
– joseph
Dec 13 '18 at 3:11
$begingroup$
from $0$ to $infty$, that's where $f_X(x)$ is positive.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:12
$begingroup$
from $0$ to $infty$, that's where $f_X(x)$ is positive.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:12
$begingroup$
ok let me try again
$endgroup$
– joseph
Dec 13 '18 at 3:12
$begingroup$
ok let me try again
$endgroup$
– joseph
Dec 13 '18 at 3:12
$begingroup$
ok can you check again?
$endgroup$
– joseph
Dec 13 '18 at 3:20
$begingroup$
ok can you check again?
$endgroup$
– joseph
Dec 13 '18 at 3:20
$begingroup$
seems fine to me.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:23
$begingroup$
seems fine to me.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:23
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037540%2fcomputing-marginal-pdf-given-joint-pdf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
(a) $E(X)$ is wrong. It should be $int_0^infty 2xe^{-2x}dx=frac{1}{2}$.
$endgroup$
– herb steinberg
Dec 13 '18 at 3:12