Computing marginal PDF given joint pdf












0












$begingroup$



Let the joint PDF of $(X, Y)$ be given by



$$f(x, y) = frac{2}{x} e^{-2x}, hspace{1cm} x>0, 0 leq y< x. $$



a) Find the marginal PDF of $X$ and find $mathbb{E}[X]$



b) Find the conditional pdf of $Y$ given $X = x$



c) Compute $text{Cov}(X, Y)$.




MY try:



a)



$$f_{X}(x) = int_{-infty}^{infty} f(x, y) mathop{dy} = int_{0}^{x} frac{2}{x}e^{-2x} mathop{dy}$$



$$ = boxed{2e^{-2x} hspace{1cm} text{ for } x > 0}$$



Also,
$$mathbb{E}[X] = int_{-infty}^{infty} x cdot f_{X}(x) mathop{dx} = int_{0}^{infty} 2xe^{-2x} mathop{dx} = boxed{frac{1}{2}}$$



b)



$$f_{Y mid X}(y mid x) = frac{f(x, y)}{f_{X}(x)} = boxed{frac{1}{x} text{ for } x > 0, x neq 0}$$



c)



$$text{Cov}(X,Y) = mathbb{E}[XY] - mathbb{E}[X]cdot mathbb{E}[Y]. $$



First, compute $mathbb{E}[Y]$ as follows:



$$mathbb{E}[Y] = mathbb{E}[mathbb{E}[Y mid X]] = mathbb{E}[frac{X}{2}] = frac{1}{2} cdot mathbb{E}[X] = frac{1}{4}$$



Now compute $mathbb{E}[XY]$:



$$mathbb{E}[XY] = int_{0}^{infty} int_{0}^{x} 2ye^{-2x} mathop{dy} mathop{dx} $$



$$ = int_{0}^{infty} x^{2}e^{-2x} mathop{dx}$$



$$= mathbb{E}[X^{2}]/2.$$



Recall we have $text{Var}(X) = 1/lambda^{2}$, which means $mathbb{E}[X^{2}] = mathbb{E}[X]^{2} + text{Var}(X) = frac{2}{lambda^{2}}$. Therefore,



$$text{Cov}(X, Y) = frac{1}{4} - frac{1}{8} = boxed{frac{1}{8}} $$





Are all of these answers correct? I'm unsure about the domains to be honest for (a) and (b).










share|cite|improve this question











$endgroup$












  • $begingroup$
    (a) $E(X)$ is wrong. It should be $int_0^infty 2xe^{-2x}dx=frac{1}{2}$.
    $endgroup$
    – herb steinberg
    Dec 13 '18 at 3:12
















0












$begingroup$



Let the joint PDF of $(X, Y)$ be given by



$$f(x, y) = frac{2}{x} e^{-2x}, hspace{1cm} x>0, 0 leq y< x. $$



a) Find the marginal PDF of $X$ and find $mathbb{E}[X]$



b) Find the conditional pdf of $Y$ given $X = x$



c) Compute $text{Cov}(X, Y)$.




MY try:



a)



$$f_{X}(x) = int_{-infty}^{infty} f(x, y) mathop{dy} = int_{0}^{x} frac{2}{x}e^{-2x} mathop{dy}$$



$$ = boxed{2e^{-2x} hspace{1cm} text{ for } x > 0}$$



Also,
$$mathbb{E}[X] = int_{-infty}^{infty} x cdot f_{X}(x) mathop{dx} = int_{0}^{infty} 2xe^{-2x} mathop{dx} = boxed{frac{1}{2}}$$



b)



$$f_{Y mid X}(y mid x) = frac{f(x, y)}{f_{X}(x)} = boxed{frac{1}{x} text{ for } x > 0, x neq 0}$$



c)



$$text{Cov}(X,Y) = mathbb{E}[XY] - mathbb{E}[X]cdot mathbb{E}[Y]. $$



First, compute $mathbb{E}[Y]$ as follows:



$$mathbb{E}[Y] = mathbb{E}[mathbb{E}[Y mid X]] = mathbb{E}[frac{X}{2}] = frac{1}{2} cdot mathbb{E}[X] = frac{1}{4}$$



Now compute $mathbb{E}[XY]$:



$$mathbb{E}[XY] = int_{0}^{infty} int_{0}^{x} 2ye^{-2x} mathop{dy} mathop{dx} $$



$$ = int_{0}^{infty} x^{2}e^{-2x} mathop{dx}$$



$$= mathbb{E}[X^{2}]/2.$$



Recall we have $text{Var}(X) = 1/lambda^{2}$, which means $mathbb{E}[X^{2}] = mathbb{E}[X]^{2} + text{Var}(X) = frac{2}{lambda^{2}}$. Therefore,



$$text{Cov}(X, Y) = frac{1}{4} - frac{1}{8} = boxed{frac{1}{8}} $$





Are all of these answers correct? I'm unsure about the domains to be honest for (a) and (b).










share|cite|improve this question











$endgroup$












  • $begingroup$
    (a) $E(X)$ is wrong. It should be $int_0^infty 2xe^{-2x}dx=frac{1}{2}$.
    $endgroup$
    – herb steinberg
    Dec 13 '18 at 3:12














0












0








0





$begingroup$



Let the joint PDF of $(X, Y)$ be given by



$$f(x, y) = frac{2}{x} e^{-2x}, hspace{1cm} x>0, 0 leq y< x. $$



a) Find the marginal PDF of $X$ and find $mathbb{E}[X]$



b) Find the conditional pdf of $Y$ given $X = x$



c) Compute $text{Cov}(X, Y)$.




MY try:



a)



$$f_{X}(x) = int_{-infty}^{infty} f(x, y) mathop{dy} = int_{0}^{x} frac{2}{x}e^{-2x} mathop{dy}$$



$$ = boxed{2e^{-2x} hspace{1cm} text{ for } x > 0}$$



Also,
$$mathbb{E}[X] = int_{-infty}^{infty} x cdot f_{X}(x) mathop{dx} = int_{0}^{infty} 2xe^{-2x} mathop{dx} = boxed{frac{1}{2}}$$



b)



$$f_{Y mid X}(y mid x) = frac{f(x, y)}{f_{X}(x)} = boxed{frac{1}{x} text{ for } x > 0, x neq 0}$$



c)



$$text{Cov}(X,Y) = mathbb{E}[XY] - mathbb{E}[X]cdot mathbb{E}[Y]. $$



First, compute $mathbb{E}[Y]$ as follows:



$$mathbb{E}[Y] = mathbb{E}[mathbb{E}[Y mid X]] = mathbb{E}[frac{X}{2}] = frac{1}{2} cdot mathbb{E}[X] = frac{1}{4}$$



Now compute $mathbb{E}[XY]$:



$$mathbb{E}[XY] = int_{0}^{infty} int_{0}^{x} 2ye^{-2x} mathop{dy} mathop{dx} $$



$$ = int_{0}^{infty} x^{2}e^{-2x} mathop{dx}$$



$$= mathbb{E}[X^{2}]/2.$$



Recall we have $text{Var}(X) = 1/lambda^{2}$, which means $mathbb{E}[X^{2}] = mathbb{E}[X]^{2} + text{Var}(X) = frac{2}{lambda^{2}}$. Therefore,



$$text{Cov}(X, Y) = frac{1}{4} - frac{1}{8} = boxed{frac{1}{8}} $$





Are all of these answers correct? I'm unsure about the domains to be honest for (a) and (b).










share|cite|improve this question











$endgroup$





Let the joint PDF of $(X, Y)$ be given by



$$f(x, y) = frac{2}{x} e^{-2x}, hspace{1cm} x>0, 0 leq y< x. $$



a) Find the marginal PDF of $X$ and find $mathbb{E}[X]$



b) Find the conditional pdf of $Y$ given $X = x$



c) Compute $text{Cov}(X, Y)$.




MY try:



a)



$$f_{X}(x) = int_{-infty}^{infty} f(x, y) mathop{dy} = int_{0}^{x} frac{2}{x}e^{-2x} mathop{dy}$$



$$ = boxed{2e^{-2x} hspace{1cm} text{ for } x > 0}$$



Also,
$$mathbb{E}[X] = int_{-infty}^{infty} x cdot f_{X}(x) mathop{dx} = int_{0}^{infty} 2xe^{-2x} mathop{dx} = boxed{frac{1}{2}}$$



b)



$$f_{Y mid X}(y mid x) = frac{f(x, y)}{f_{X}(x)} = boxed{frac{1}{x} text{ for } x > 0, x neq 0}$$



c)



$$text{Cov}(X,Y) = mathbb{E}[XY] - mathbb{E}[X]cdot mathbb{E}[Y]. $$



First, compute $mathbb{E}[Y]$ as follows:



$$mathbb{E}[Y] = mathbb{E}[mathbb{E}[Y mid X]] = mathbb{E}[frac{X}{2}] = frac{1}{2} cdot mathbb{E}[X] = frac{1}{4}$$



Now compute $mathbb{E}[XY]$:



$$mathbb{E}[XY] = int_{0}^{infty} int_{0}^{x} 2ye^{-2x} mathop{dy} mathop{dx} $$



$$ = int_{0}^{infty} x^{2}e^{-2x} mathop{dx}$$



$$= mathbb{E}[X^{2}]/2.$$



Recall we have $text{Var}(X) = 1/lambda^{2}$, which means $mathbb{E}[X^{2}] = mathbb{E}[X]^{2} + text{Var}(X) = frac{2}{lambda^{2}}$. Therefore,



$$text{Cov}(X, Y) = frac{1}{4} - frac{1}{8} = boxed{frac{1}{8}} $$





Are all of these answers correct? I'm unsure about the domains to be honest for (a) and (b).







probability probability-theory probability-distributions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 13 '18 at 3:19







joseph

















asked Dec 13 '18 at 2:53









josephjoseph

496111




496111












  • $begingroup$
    (a) $E(X)$ is wrong. It should be $int_0^infty 2xe^{-2x}dx=frac{1}{2}$.
    $endgroup$
    – herb steinberg
    Dec 13 '18 at 3:12


















  • $begingroup$
    (a) $E(X)$ is wrong. It should be $int_0^infty 2xe^{-2x}dx=frac{1}{2}$.
    $endgroup$
    – herb steinberg
    Dec 13 '18 at 3:12
















$begingroup$
(a) $E(X)$ is wrong. It should be $int_0^infty 2xe^{-2x}dx=frac{1}{2}$.
$endgroup$
– herb steinberg
Dec 13 '18 at 3:12




$begingroup$
(a) $E(X)$ is wrong. It should be $int_0^infty 2xe^{-2x}dx=frac{1}{2}$.
$endgroup$
– herb steinberg
Dec 13 '18 at 3:12










1 Answer
1






active

oldest

votes


















1












$begingroup$

Guide:




  • $E[X], E[Y], E[XY]$ should all be just numbers.


  • $X$ follows an exponential distribution, the expectation is $frac12$.


  • begin{align}
    E[XY] &= int_0^infty int_0^x 2y e^{-2x} , dy , dx \
    &=frac12int_0^infty 2x^2 e^{-2x}, dx \
    &= frac12 E[X^2]
    end{align}







share|cite|improve this answer









$endgroup$













  • $begingroup$
    I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
    $endgroup$
    – joseph
    Dec 13 '18 at 3:11










  • $begingroup$
    from $0$ to $infty$, that's where $f_X(x)$ is positive.
    $endgroup$
    – Siong Thye Goh
    Dec 13 '18 at 3:12












  • $begingroup$
    ok let me try again
    $endgroup$
    – joseph
    Dec 13 '18 at 3:12










  • $begingroup$
    ok can you check again?
    $endgroup$
    – joseph
    Dec 13 '18 at 3:20










  • $begingroup$
    seems fine to me.
    $endgroup$
    – Siong Thye Goh
    Dec 13 '18 at 3:23











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037540%2fcomputing-marginal-pdf-given-joint-pdf%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Guide:




  • $E[X], E[Y], E[XY]$ should all be just numbers.


  • $X$ follows an exponential distribution, the expectation is $frac12$.


  • begin{align}
    E[XY] &= int_0^infty int_0^x 2y e^{-2x} , dy , dx \
    &=frac12int_0^infty 2x^2 e^{-2x}, dx \
    &= frac12 E[X^2]
    end{align}







share|cite|improve this answer









$endgroup$













  • $begingroup$
    I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
    $endgroup$
    – joseph
    Dec 13 '18 at 3:11










  • $begingroup$
    from $0$ to $infty$, that's where $f_X(x)$ is positive.
    $endgroup$
    – Siong Thye Goh
    Dec 13 '18 at 3:12












  • $begingroup$
    ok let me try again
    $endgroup$
    – joseph
    Dec 13 '18 at 3:12










  • $begingroup$
    ok can you check again?
    $endgroup$
    – joseph
    Dec 13 '18 at 3:20










  • $begingroup$
    seems fine to me.
    $endgroup$
    – Siong Thye Goh
    Dec 13 '18 at 3:23
















1












$begingroup$

Guide:




  • $E[X], E[Y], E[XY]$ should all be just numbers.


  • $X$ follows an exponential distribution, the expectation is $frac12$.


  • begin{align}
    E[XY] &= int_0^infty int_0^x 2y e^{-2x} , dy , dx \
    &=frac12int_0^infty 2x^2 e^{-2x}, dx \
    &= frac12 E[X^2]
    end{align}







share|cite|improve this answer









$endgroup$













  • $begingroup$
    I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
    $endgroup$
    – joseph
    Dec 13 '18 at 3:11










  • $begingroup$
    from $0$ to $infty$, that's where $f_X(x)$ is positive.
    $endgroup$
    – Siong Thye Goh
    Dec 13 '18 at 3:12












  • $begingroup$
    ok let me try again
    $endgroup$
    – joseph
    Dec 13 '18 at 3:12










  • $begingroup$
    ok can you check again?
    $endgroup$
    – joseph
    Dec 13 '18 at 3:20










  • $begingroup$
    seems fine to me.
    $endgroup$
    – Siong Thye Goh
    Dec 13 '18 at 3:23














1












1








1





$begingroup$

Guide:




  • $E[X], E[Y], E[XY]$ should all be just numbers.


  • $X$ follows an exponential distribution, the expectation is $frac12$.


  • begin{align}
    E[XY] &= int_0^infty int_0^x 2y e^{-2x} , dy , dx \
    &=frac12int_0^infty 2x^2 e^{-2x}, dx \
    &= frac12 E[X^2]
    end{align}







share|cite|improve this answer









$endgroup$



Guide:




  • $E[X], E[Y], E[XY]$ should all be just numbers.


  • $X$ follows an exponential distribution, the expectation is $frac12$.


  • begin{align}
    E[XY] &= int_0^infty int_0^x 2y e^{-2x} , dy , dx \
    &=frac12int_0^infty 2x^2 e^{-2x}, dx \
    &= frac12 E[X^2]
    end{align}








share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 13 '18 at 3:09









Siong Thye GohSiong Thye Goh

102k1466118




102k1466118












  • $begingroup$
    I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
    $endgroup$
    – joseph
    Dec 13 '18 at 3:11










  • $begingroup$
    from $0$ to $infty$, that's where $f_X(x)$ is positive.
    $endgroup$
    – Siong Thye Goh
    Dec 13 '18 at 3:12












  • $begingroup$
    ok let me try again
    $endgroup$
    – joseph
    Dec 13 '18 at 3:12










  • $begingroup$
    ok can you check again?
    $endgroup$
    – joseph
    Dec 13 '18 at 3:20










  • $begingroup$
    seems fine to me.
    $endgroup$
    – Siong Thye Goh
    Dec 13 '18 at 3:23


















  • $begingroup$
    I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
    $endgroup$
    – joseph
    Dec 13 '18 at 3:11










  • $begingroup$
    from $0$ to $infty$, that's where $f_X(x)$ is positive.
    $endgroup$
    – Siong Thye Goh
    Dec 13 '18 at 3:12












  • $begingroup$
    ok let me try again
    $endgroup$
    – joseph
    Dec 13 '18 at 3:12










  • $begingroup$
    ok can you check again?
    $endgroup$
    – joseph
    Dec 13 '18 at 3:20










  • $begingroup$
    seems fine to me.
    $endgroup$
    – Siong Thye Goh
    Dec 13 '18 at 3:23
















$begingroup$
I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
$endgroup$
– joseph
Dec 13 '18 at 3:11




$begingroup$
I see. If i wanted to compute the integral $int x cdot f_{X}(x)$, what would the bounds be ?
$endgroup$
– joseph
Dec 13 '18 at 3:11












$begingroup$
from $0$ to $infty$, that's where $f_X(x)$ is positive.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:12






$begingroup$
from $0$ to $infty$, that's where $f_X(x)$ is positive.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:12














$begingroup$
ok let me try again
$endgroup$
– joseph
Dec 13 '18 at 3:12




$begingroup$
ok let me try again
$endgroup$
– joseph
Dec 13 '18 at 3:12












$begingroup$
ok can you check again?
$endgroup$
– joseph
Dec 13 '18 at 3:20




$begingroup$
ok can you check again?
$endgroup$
– joseph
Dec 13 '18 at 3:20












$begingroup$
seems fine to me.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:23




$begingroup$
seems fine to me.
$endgroup$
– Siong Thye Goh
Dec 13 '18 at 3:23


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037540%2fcomputing-marginal-pdf-given-joint-pdf%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa