Summing rolls of three distinct dice and gets $a$, $b$, and $c$. Find the probability of $2a + b + c = 10$.
$begingroup$
Summing rolls of three distinct dice and gets $a$, $b$, and $c$. Find the probability of $2a + b + c = 10$.
My answer:
a b c
4 1 1
3 2 2
2 3 3
1 4 4
3 3 1
3 1 3
2 1 5
2 5 1
2 4 2
2 2 4
1 5 3
1 3 5
Total $12$ cases out of $6^3 implies $ probability is $1/18$. Is this correct? Please check.
probability combinatorics
$endgroup$
add a comment |
$begingroup$
Summing rolls of three distinct dice and gets $a$, $b$, and $c$. Find the probability of $2a + b + c = 10$.
My answer:
a b c
4 1 1
3 2 2
2 3 3
1 4 4
3 3 1
3 1 3
2 1 5
2 5 1
2 4 2
2 2 4
1 5 3
1 3 5
Total $12$ cases out of $6^3 implies $ probability is $1/18$. Is this correct? Please check.
probability combinatorics
$endgroup$
1
$begingroup$
It's poor practice to use the title exclusively to give a problem statement. Indeed the full problem statement should appear in the body of the Question, regardless of whether the title gives a terse version of the problem.
$endgroup$
– hardmath
Dec 13 '18 at 1:51
$begingroup$
You should get $7+5+3 +1 = 16$.
$endgroup$
– rsadhvika
Dec 13 '18 at 2:03
add a comment |
$begingroup$
Summing rolls of three distinct dice and gets $a$, $b$, and $c$. Find the probability of $2a + b + c = 10$.
My answer:
a b c
4 1 1
3 2 2
2 3 3
1 4 4
3 3 1
3 1 3
2 1 5
2 5 1
2 4 2
2 2 4
1 5 3
1 3 5
Total $12$ cases out of $6^3 implies $ probability is $1/18$. Is this correct? Please check.
probability combinatorics
$endgroup$
Summing rolls of three distinct dice and gets $a$, $b$, and $c$. Find the probability of $2a + b + c = 10$.
My answer:
a b c
4 1 1
3 2 2
2 3 3
1 4 4
3 3 1
3 1 3
2 1 5
2 5 1
2 4 2
2 2 4
1 5 3
1 3 5
Total $12$ cases out of $6^3 implies $ probability is $1/18$. Is this correct? Please check.
probability combinatorics
probability combinatorics
edited Dec 13 '18 at 9:19
N. F. Taussig
44.5k103357
44.5k103357
asked Dec 13 '18 at 1:46
user526427user526427
1187
1187
1
$begingroup$
It's poor practice to use the title exclusively to give a problem statement. Indeed the full problem statement should appear in the body of the Question, regardless of whether the title gives a terse version of the problem.
$endgroup$
– hardmath
Dec 13 '18 at 1:51
$begingroup$
You should get $7+5+3 +1 = 16$.
$endgroup$
– rsadhvika
Dec 13 '18 at 2:03
add a comment |
1
$begingroup$
It's poor practice to use the title exclusively to give a problem statement. Indeed the full problem statement should appear in the body of the Question, regardless of whether the title gives a terse version of the problem.
$endgroup$
– hardmath
Dec 13 '18 at 1:51
$begingroup$
You should get $7+5+3 +1 = 16$.
$endgroup$
– rsadhvika
Dec 13 '18 at 2:03
1
1
$begingroup$
It's poor practice to use the title exclusively to give a problem statement. Indeed the full problem statement should appear in the body of the Question, regardless of whether the title gives a terse version of the problem.
$endgroup$
– hardmath
Dec 13 '18 at 1:51
$begingroup$
It's poor practice to use the title exclusively to give a problem statement. Indeed the full problem statement should appear in the body of the Question, regardless of whether the title gives a terse version of the problem.
$endgroup$
– hardmath
Dec 13 '18 at 1:51
$begingroup$
You should get $7+5+3 +1 = 16$.
$endgroup$
– rsadhvika
Dec 13 '18 at 2:03
$begingroup$
You should get $7+5+3 +1 = 16$.
$endgroup$
– rsadhvika
Dec 13 '18 at 2:03
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
No. You forgot $1,2,6$ and $1,6,2$
I think you would not have missed those had you generated the combination a little more systematically. That is, starting with $a=4$ ( which is clearly the maximum for $a$), you indeed get only one option: $4,1,1$. OK, so let's move to $a=3$. Now let's figure out all options with that, starting with the highest possible value of $b$: $3,3,1$, $3,2,2$, $3,1,3$, and that's it. And only now go down to $a=2$, etc. Indeed, doing this, I immediately spotted the missing two combinations.
Looking at your combinations, there is a certain systematicity to it ... but not enough.
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{a = 1}^{6}{1 over 6}
sum_{b = 1}^{6}{1 over 6}sum_{c = 1}^{6}
{1 over 6}bracks{z^{10}}z^{2a + b + c}}
\[5mm] = &
{1 over 216}bracks{z^{10}}
bracks{sum_{a = 1}^{6}pars{z^{2}}^{a}}
pars{sum_{b = 1}^{6}z^{b}}pars{sum_{b = 1}^{6}z^{c}}
\[5mm] = &
{1 over 216}bracks{z^{10}}
pars{z^{2},{z^{12} - 1 over z^{2} - 1}}
pars{z,{z^{6} - 1 over z - 1}}
pars{z,{z^{6} - 1 over z - 1}}
\[5mm] = &
{1 over 216}bracks{z^{6}}{-z^{24} + 2z^{18} - 2z^{6} + 1 over
pars{1 - z^{2}}pars{1 - z}^{2}} =
{1 over 216}bracks{z^{6}}{-2z^{6} + 1 over
pars{1 - z^{2}}pars{1 - z}^{2}}
\[5mm] = &
-,{1 over 108} + {1 over 216},bracks{z^{6}}
sum_{m = 0}^{infty}z^{2m}
sum_{n = 0}^{infty}{-2 choose n}pars{-z}^{n}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}
sum_{n = 0}^{infty}bracks{{2 + n - 1choose n}
pars{-1}^{n}}pars{-1}^{n}bracks{2m + n = 6}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}sum_{n = 0}^{infty}pars{n + 1}
bracks{n = 6 - 2m}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}pars{7 - 2m}bracks{6 - 2m geq 0}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{3}pars{7 - 2m} =
bbx{7 over 108} approx 0.0648
end{align}
It means $ds{bbx{{14 over 6 times 6 times 6} = {7 over 108}}}$.
$endgroup$
add a comment |
$begingroup$
Hint: By parity, you know that b and c are both even or both odd.
From here, consider the stars and bars method of counting (multichoose). There will be an edge case or two, but this will simplify your job significantly.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037495%2fsumming-rolls-of-three-distinct-dice-and-gets-a-b-and-c-find-the-probab%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No. You forgot $1,2,6$ and $1,6,2$
I think you would not have missed those had you generated the combination a little more systematically. That is, starting with $a=4$ ( which is clearly the maximum for $a$), you indeed get only one option: $4,1,1$. OK, so let's move to $a=3$. Now let's figure out all options with that, starting with the highest possible value of $b$: $3,3,1$, $3,2,2$, $3,1,3$, and that's it. And only now go down to $a=2$, etc. Indeed, doing this, I immediately spotted the missing two combinations.
Looking at your combinations, there is a certain systematicity to it ... but not enough.
$endgroup$
add a comment |
$begingroup$
No. You forgot $1,2,6$ and $1,6,2$
I think you would not have missed those had you generated the combination a little more systematically. That is, starting with $a=4$ ( which is clearly the maximum for $a$), you indeed get only one option: $4,1,1$. OK, so let's move to $a=3$. Now let's figure out all options with that, starting with the highest possible value of $b$: $3,3,1$, $3,2,2$, $3,1,3$, and that's it. And only now go down to $a=2$, etc. Indeed, doing this, I immediately spotted the missing two combinations.
Looking at your combinations, there is a certain systematicity to it ... but not enough.
$endgroup$
add a comment |
$begingroup$
No. You forgot $1,2,6$ and $1,6,2$
I think you would not have missed those had you generated the combination a little more systematically. That is, starting with $a=4$ ( which is clearly the maximum for $a$), you indeed get only one option: $4,1,1$. OK, so let's move to $a=3$. Now let's figure out all options with that, starting with the highest possible value of $b$: $3,3,1$, $3,2,2$, $3,1,3$, and that's it. And only now go down to $a=2$, etc. Indeed, doing this, I immediately spotted the missing two combinations.
Looking at your combinations, there is a certain systematicity to it ... but not enough.
$endgroup$
No. You forgot $1,2,6$ and $1,6,2$
I think you would not have missed those had you generated the combination a little more systematically. That is, starting with $a=4$ ( which is clearly the maximum for $a$), you indeed get only one option: $4,1,1$. OK, so let's move to $a=3$. Now let's figure out all options with that, starting with the highest possible value of $b$: $3,3,1$, $3,2,2$, $3,1,3$, and that's it. And only now go down to $a=2$, etc. Indeed, doing this, I immediately spotted the missing two combinations.
Looking at your combinations, there is a certain systematicity to it ... but not enough.
edited Dec 13 '18 at 2:02
answered Dec 13 '18 at 1:48
Bram28Bram28
63.2k44793
63.2k44793
add a comment |
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{a = 1}^{6}{1 over 6}
sum_{b = 1}^{6}{1 over 6}sum_{c = 1}^{6}
{1 over 6}bracks{z^{10}}z^{2a + b + c}}
\[5mm] = &
{1 over 216}bracks{z^{10}}
bracks{sum_{a = 1}^{6}pars{z^{2}}^{a}}
pars{sum_{b = 1}^{6}z^{b}}pars{sum_{b = 1}^{6}z^{c}}
\[5mm] = &
{1 over 216}bracks{z^{10}}
pars{z^{2},{z^{12} - 1 over z^{2} - 1}}
pars{z,{z^{6} - 1 over z - 1}}
pars{z,{z^{6} - 1 over z - 1}}
\[5mm] = &
{1 over 216}bracks{z^{6}}{-z^{24} + 2z^{18} - 2z^{6} + 1 over
pars{1 - z^{2}}pars{1 - z}^{2}} =
{1 over 216}bracks{z^{6}}{-2z^{6} + 1 over
pars{1 - z^{2}}pars{1 - z}^{2}}
\[5mm] = &
-,{1 over 108} + {1 over 216},bracks{z^{6}}
sum_{m = 0}^{infty}z^{2m}
sum_{n = 0}^{infty}{-2 choose n}pars{-z}^{n}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}
sum_{n = 0}^{infty}bracks{{2 + n - 1choose n}
pars{-1}^{n}}pars{-1}^{n}bracks{2m + n = 6}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}sum_{n = 0}^{infty}pars{n + 1}
bracks{n = 6 - 2m}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}pars{7 - 2m}bracks{6 - 2m geq 0}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{3}pars{7 - 2m} =
bbx{7 over 108} approx 0.0648
end{align}
It means $ds{bbx{{14 over 6 times 6 times 6} = {7 over 108}}}$.
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{a = 1}^{6}{1 over 6}
sum_{b = 1}^{6}{1 over 6}sum_{c = 1}^{6}
{1 over 6}bracks{z^{10}}z^{2a + b + c}}
\[5mm] = &
{1 over 216}bracks{z^{10}}
bracks{sum_{a = 1}^{6}pars{z^{2}}^{a}}
pars{sum_{b = 1}^{6}z^{b}}pars{sum_{b = 1}^{6}z^{c}}
\[5mm] = &
{1 over 216}bracks{z^{10}}
pars{z^{2},{z^{12} - 1 over z^{2} - 1}}
pars{z,{z^{6} - 1 over z - 1}}
pars{z,{z^{6} - 1 over z - 1}}
\[5mm] = &
{1 over 216}bracks{z^{6}}{-z^{24} + 2z^{18} - 2z^{6} + 1 over
pars{1 - z^{2}}pars{1 - z}^{2}} =
{1 over 216}bracks{z^{6}}{-2z^{6} + 1 over
pars{1 - z^{2}}pars{1 - z}^{2}}
\[5mm] = &
-,{1 over 108} + {1 over 216},bracks{z^{6}}
sum_{m = 0}^{infty}z^{2m}
sum_{n = 0}^{infty}{-2 choose n}pars{-z}^{n}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}
sum_{n = 0}^{infty}bracks{{2 + n - 1choose n}
pars{-1}^{n}}pars{-1}^{n}bracks{2m + n = 6}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}sum_{n = 0}^{infty}pars{n + 1}
bracks{n = 6 - 2m}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}pars{7 - 2m}bracks{6 - 2m geq 0}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{3}pars{7 - 2m} =
bbx{7 over 108} approx 0.0648
end{align}
It means $ds{bbx{{14 over 6 times 6 times 6} = {7 over 108}}}$.
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{a = 1}^{6}{1 over 6}
sum_{b = 1}^{6}{1 over 6}sum_{c = 1}^{6}
{1 over 6}bracks{z^{10}}z^{2a + b + c}}
\[5mm] = &
{1 over 216}bracks{z^{10}}
bracks{sum_{a = 1}^{6}pars{z^{2}}^{a}}
pars{sum_{b = 1}^{6}z^{b}}pars{sum_{b = 1}^{6}z^{c}}
\[5mm] = &
{1 over 216}bracks{z^{10}}
pars{z^{2},{z^{12} - 1 over z^{2} - 1}}
pars{z,{z^{6} - 1 over z - 1}}
pars{z,{z^{6} - 1 over z - 1}}
\[5mm] = &
{1 over 216}bracks{z^{6}}{-z^{24} + 2z^{18} - 2z^{6} + 1 over
pars{1 - z^{2}}pars{1 - z}^{2}} =
{1 over 216}bracks{z^{6}}{-2z^{6} + 1 over
pars{1 - z^{2}}pars{1 - z}^{2}}
\[5mm] = &
-,{1 over 108} + {1 over 216},bracks{z^{6}}
sum_{m = 0}^{infty}z^{2m}
sum_{n = 0}^{infty}{-2 choose n}pars{-z}^{n}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}
sum_{n = 0}^{infty}bracks{{2 + n - 1choose n}
pars{-1}^{n}}pars{-1}^{n}bracks{2m + n = 6}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}sum_{n = 0}^{infty}pars{n + 1}
bracks{n = 6 - 2m}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}pars{7 - 2m}bracks{6 - 2m geq 0}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{3}pars{7 - 2m} =
bbx{7 over 108} approx 0.0648
end{align}
It means $ds{bbx{{14 over 6 times 6 times 6} = {7 over 108}}}$.
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{a = 1}^{6}{1 over 6}
sum_{b = 1}^{6}{1 over 6}sum_{c = 1}^{6}
{1 over 6}bracks{z^{10}}z^{2a + b + c}}
\[5mm] = &
{1 over 216}bracks{z^{10}}
bracks{sum_{a = 1}^{6}pars{z^{2}}^{a}}
pars{sum_{b = 1}^{6}z^{b}}pars{sum_{b = 1}^{6}z^{c}}
\[5mm] = &
{1 over 216}bracks{z^{10}}
pars{z^{2},{z^{12} - 1 over z^{2} - 1}}
pars{z,{z^{6} - 1 over z - 1}}
pars{z,{z^{6} - 1 over z - 1}}
\[5mm] = &
{1 over 216}bracks{z^{6}}{-z^{24} + 2z^{18} - 2z^{6} + 1 over
pars{1 - z^{2}}pars{1 - z}^{2}} =
{1 over 216}bracks{z^{6}}{-2z^{6} + 1 over
pars{1 - z^{2}}pars{1 - z}^{2}}
\[5mm] = &
-,{1 over 108} + {1 over 216},bracks{z^{6}}
sum_{m = 0}^{infty}z^{2m}
sum_{n = 0}^{infty}{-2 choose n}pars{-z}^{n}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}
sum_{n = 0}^{infty}bracks{{2 + n - 1choose n}
pars{-1}^{n}}pars{-1}^{n}bracks{2m + n = 6}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}sum_{n = 0}^{infty}pars{n + 1}
bracks{n = 6 - 2m}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{infty}pars{7 - 2m}bracks{6 - 2m geq 0}
\[5mm] = &
-,{1 over 108} + {1 over 216}
sum_{m = 0}^{3}pars{7 - 2m} =
bbx{7 over 108} approx 0.0648
end{align}
It means $ds{bbx{{14 over 6 times 6 times 6} = {7 over 108}}}$.
edited Dec 14 '18 at 18:12
answered Dec 13 '18 at 2:37
Felix MarinFelix Marin
68.2k7109143
68.2k7109143
add a comment |
add a comment |
$begingroup$
Hint: By parity, you know that b and c are both even or both odd.
From here, consider the stars and bars method of counting (multichoose). There will be an edge case or two, but this will simplify your job significantly.
$endgroup$
add a comment |
$begingroup$
Hint: By parity, you know that b and c are both even or both odd.
From here, consider the stars and bars method of counting (multichoose). There will be an edge case or two, but this will simplify your job significantly.
$endgroup$
add a comment |
$begingroup$
Hint: By parity, you know that b and c are both even or both odd.
From here, consider the stars and bars method of counting (multichoose). There will be an edge case or two, but this will simplify your job significantly.
$endgroup$
Hint: By parity, you know that b and c are both even or both odd.
From here, consider the stars and bars method of counting (multichoose). There will be an edge case or two, but this will simplify your job significantly.
answered Dec 13 '18 at 2:40
T. FoT. Fo
466311
466311
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037495%2fsumming-rolls-of-three-distinct-dice-and-gets-a-b-and-c-find-the-probab%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
It's poor practice to use the title exclusively to give a problem statement. Indeed the full problem statement should appear in the body of the Question, regardless of whether the title gives a terse version of the problem.
$endgroup$
– hardmath
Dec 13 '18 at 1:51
$begingroup$
You should get $7+5+3 +1 = 16$.
$endgroup$
– rsadhvika
Dec 13 '18 at 2:03