Proof area of {$(x,y) R^2 | 0 le y < e^x$ and $0le x< h$} is $e^h-1$
$begingroup$
I'm supposed to prove that the area of {$(x,y) R^2 | 0 le y < e^x$ and $0le x< h$} is $e^h-1$
I was going to try to make it a function and calculate it using a Riemanns sum.
That led me to
$F(x) = e^2 = y$
Assuming n rectangles with the width $h/n$ and height $e^frac{hi}{n}$
That got me to the sum and now I'm stuck at
$$frac hn sum_{i=0}^n e^frac{hi}{n} $$
How should I proceed?
The proof is supposed to use simple sets, e.i. not supposed to use an integral.
proof-writing power-series supremum-and-infimum riemann-sum
$endgroup$
add a comment |
$begingroup$
I'm supposed to prove that the area of {$(x,y) R^2 | 0 le y < e^x$ and $0le x< h$} is $e^h-1$
I was going to try to make it a function and calculate it using a Riemanns sum.
That led me to
$F(x) = e^2 = y$
Assuming n rectangles with the width $h/n$ and height $e^frac{hi}{n}$
That got me to the sum and now I'm stuck at
$$frac hn sum_{i=0}^n e^frac{hi}{n} $$
How should I proceed?
The proof is supposed to use simple sets, e.i. not supposed to use an integral.
proof-writing power-series supremum-and-infimum riemann-sum
$endgroup$
1
$begingroup$
look up the fundamental theorem of calculus
$endgroup$
– wilkersmon
Dec 6 '18 at 11:08
$begingroup$
It is a geomtrical serie, the sum is equal to $$h/nsumlimits_{i = 0}^{n - 1} {{e^{ih/n}}} = left( {h/n} right)frac{{1 - {e^{(h + frac{h}{n})}}}}{{1 - {e^{h/n}}}}$$
$endgroup$
– Gustave
Dec 6 '18 at 11:35
add a comment |
$begingroup$
I'm supposed to prove that the area of {$(x,y) R^2 | 0 le y < e^x$ and $0le x< h$} is $e^h-1$
I was going to try to make it a function and calculate it using a Riemanns sum.
That led me to
$F(x) = e^2 = y$
Assuming n rectangles with the width $h/n$ and height $e^frac{hi}{n}$
That got me to the sum and now I'm stuck at
$$frac hn sum_{i=0}^n e^frac{hi}{n} $$
How should I proceed?
The proof is supposed to use simple sets, e.i. not supposed to use an integral.
proof-writing power-series supremum-and-infimum riemann-sum
$endgroup$
I'm supposed to prove that the area of {$(x,y) R^2 | 0 le y < e^x$ and $0le x< h$} is $e^h-1$
I was going to try to make it a function and calculate it using a Riemanns sum.
That led me to
$F(x) = e^2 = y$
Assuming n rectangles with the width $h/n$ and height $e^frac{hi}{n}$
That got me to the sum and now I'm stuck at
$$frac hn sum_{i=0}^n e^frac{hi}{n} $$
How should I proceed?
The proof is supposed to use simple sets, e.i. not supposed to use an integral.
proof-writing power-series supremum-and-infimum riemann-sum
proof-writing power-series supremum-and-infimum riemann-sum
edited Dec 6 '18 at 11:30
user9516437
asked Dec 6 '18 at 11:05
user9516437user9516437
11
11
1
$begingroup$
look up the fundamental theorem of calculus
$endgroup$
– wilkersmon
Dec 6 '18 at 11:08
$begingroup$
It is a geomtrical serie, the sum is equal to $$h/nsumlimits_{i = 0}^{n - 1} {{e^{ih/n}}} = left( {h/n} right)frac{{1 - {e^{(h + frac{h}{n})}}}}{{1 - {e^{h/n}}}}$$
$endgroup$
– Gustave
Dec 6 '18 at 11:35
add a comment |
1
$begingroup$
look up the fundamental theorem of calculus
$endgroup$
– wilkersmon
Dec 6 '18 at 11:08
$begingroup$
It is a geomtrical serie, the sum is equal to $$h/nsumlimits_{i = 0}^{n - 1} {{e^{ih/n}}} = left( {h/n} right)frac{{1 - {e^{(h + frac{h}{n})}}}}{{1 - {e^{h/n}}}}$$
$endgroup$
– Gustave
Dec 6 '18 at 11:35
1
1
$begingroup$
look up the fundamental theorem of calculus
$endgroup$
– wilkersmon
Dec 6 '18 at 11:08
$begingroup$
look up the fundamental theorem of calculus
$endgroup$
– wilkersmon
Dec 6 '18 at 11:08
$begingroup$
It is a geomtrical serie, the sum is equal to $$h/nsumlimits_{i = 0}^{n - 1} {{e^{ih/n}}} = left( {h/n} right)frac{{1 - {e^{(h + frac{h}{n})}}}}{{1 - {e^{h/n}}}}$$
$endgroup$
– Gustave
Dec 6 '18 at 11:35
$begingroup$
It is a geomtrical serie, the sum is equal to $$h/nsumlimits_{i = 0}^{n - 1} {{e^{ih/n}}} = left( {h/n} right)frac{{1 - {e^{(h + frac{h}{n})}}}}{{1 - {e^{h/n}}}}$$
$endgroup$
– Gustave
Dec 6 '18 at 11:35
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$sum_{i=0}^n e^frac{hi}{n}$ is a geometric series with ratio $e^{frac hn}$ so
$sum_{i=0}^n e^frac{hi}{n} = frac{e^{frac{h(n+1)}{n}}-1}{e^{frac hn}-1}$
As $n rightarrow infty$, we have $e^{frac{h(n+1)}{n}}-1 rightarrow e^h-1$ and $e^{frac hn}-1 rightarrow frac hn$ so
$frac hn sum_{i=0}^n e^frac{hi}{n} rightarrow e^h-1$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028356%2fproof-area-of-x-y-r2-0-le-y-ex-and-0-le-x-h-is-eh-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$sum_{i=0}^n e^frac{hi}{n}$ is a geometric series with ratio $e^{frac hn}$ so
$sum_{i=0}^n e^frac{hi}{n} = frac{e^{frac{h(n+1)}{n}}-1}{e^{frac hn}-1}$
As $n rightarrow infty$, we have $e^{frac{h(n+1)}{n}}-1 rightarrow e^h-1$ and $e^{frac hn}-1 rightarrow frac hn$ so
$frac hn sum_{i=0}^n e^frac{hi}{n} rightarrow e^h-1$
$endgroup$
add a comment |
$begingroup$
$sum_{i=0}^n e^frac{hi}{n}$ is a geometric series with ratio $e^{frac hn}$ so
$sum_{i=0}^n e^frac{hi}{n} = frac{e^{frac{h(n+1)}{n}}-1}{e^{frac hn}-1}$
As $n rightarrow infty$, we have $e^{frac{h(n+1)}{n}}-1 rightarrow e^h-1$ and $e^{frac hn}-1 rightarrow frac hn$ so
$frac hn sum_{i=0}^n e^frac{hi}{n} rightarrow e^h-1$
$endgroup$
add a comment |
$begingroup$
$sum_{i=0}^n e^frac{hi}{n}$ is a geometric series with ratio $e^{frac hn}$ so
$sum_{i=0}^n e^frac{hi}{n} = frac{e^{frac{h(n+1)}{n}}-1}{e^{frac hn}-1}$
As $n rightarrow infty$, we have $e^{frac{h(n+1)}{n}}-1 rightarrow e^h-1$ and $e^{frac hn}-1 rightarrow frac hn$ so
$frac hn sum_{i=0}^n e^frac{hi}{n} rightarrow e^h-1$
$endgroup$
$sum_{i=0}^n e^frac{hi}{n}$ is a geometric series with ratio $e^{frac hn}$ so
$sum_{i=0}^n e^frac{hi}{n} = frac{e^{frac{h(n+1)}{n}}-1}{e^{frac hn}-1}$
As $n rightarrow infty$, we have $e^{frac{h(n+1)}{n}}-1 rightarrow e^h-1$ and $e^{frac hn}-1 rightarrow frac hn$ so
$frac hn sum_{i=0}^n e^frac{hi}{n} rightarrow e^h-1$
answered Dec 6 '18 at 11:34
gandalf61gandalf61
8,579725
8,579725
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028356%2fproof-area-of-x-y-r2-0-le-y-ex-and-0-le-x-h-is-eh-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
look up the fundamental theorem of calculus
$endgroup$
– wilkersmon
Dec 6 '18 at 11:08
$begingroup$
It is a geomtrical serie, the sum is equal to $$h/nsumlimits_{i = 0}^{n - 1} {{e^{ih/n}}} = left( {h/n} right)frac{{1 - {e^{(h + frac{h}{n})}}}}{{1 - {e^{h/n}}}}$$
$endgroup$
– Gustave
Dec 6 '18 at 11:35