where does the $cos(theta)=1-2sin^{2}(theta/2)$ come from?












1












$begingroup$


I have seen people using $cos(theta)=1-2sin^{2}(theta/2)$ but how do we get it?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I have seen people using $cos(theta)=1-2sin^{2}(theta/2)$ but how do we get it?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I have seen people using $cos(theta)=1-2sin^{2}(theta/2)$ but how do we get it?










      share|cite|improve this question











      $endgroup$




      I have seen people using $cos(theta)=1-2sin^{2}(theta/2)$ but how do we get it?







      trigonometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 6 '18 at 10:59









      Tianlalu

      3,08621038




      3,08621038










      asked Dec 6 '18 at 10:54









      Student123Student123

      536




      536






















          5 Answers
          5






          active

          oldest

          votes


















          3












          $begingroup$

          It's a special case of the compound-angle formula $cos (A+B)=cos Acos B-sin Asin B$. Take $A=B=frac{theta}{2}$ so $costheta=cos^2frac{theta}{2}-sin^2frac{theta}{2}$. This can be written in two equivalent forms using $cos^2frac{theta}{2}+sin^2frac{theta}{2}=1$, one being $1-2sin^2frac{theta}{2}$ (the other is $2cos^2frac{theta}{2}-1$).






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            $$
            cos(2theta)=1-2sin^2(theta).
            $$

            Change $thetarightarrowtheta/2$.






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              Hint: What happens if you use the double-angle identity for cosine and use the substitution $theta to frac{theta}{2}$?



              Also, note that



              $$cos(apm b) = cos acos bmpsin asin b$$



              which allows you to derive the double-angle identity.






              share|cite|improve this answer











              $endgroup$





















                0












                $begingroup$

                Hint: Use the definition of the half angle formula $$sin frac {theta} 2 = pm sqrt {frac {1 + cos theta}{2}}$$ Square both sides and manipulate as needed.






                share|cite|improve this answer









                $endgroup$





















                  0












                  $begingroup$

                  De Moivre:$$cos^2alpha-sin^2alpha+2icosalphasinalpha=(cosalpha+isinalpha)^2=cos(2alpha)+2isin(2alpha)$$



                  So that: $$1-2sin^2alpha=cos^2alpha+sin^2alpha-2sin^2alpha=cos^2alpha-sin^2alpha=cos2alpha$$



                  Now substitute: $alpha=frac12theta$.






                  share|cite|improve this answer









                  $endgroup$













                    Your Answer





                    StackExchange.ifUsing("editor", function () {
                    return StackExchange.using("mathjaxEditing", function () {
                    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                    });
                    });
                    }, "mathjax-editing");

                    StackExchange.ready(function() {
                    var channelOptions = {
                    tags: "".split(" "),
                    id: "69"
                    };
                    initTagRenderer("".split(" "), "".split(" "), channelOptions);

                    StackExchange.using("externalEditor", function() {
                    // Have to fire editor after snippets, if snippets enabled
                    if (StackExchange.settings.snippets.snippetsEnabled) {
                    StackExchange.using("snippets", function() {
                    createEditor();
                    });
                    }
                    else {
                    createEditor();
                    }
                    });

                    function createEditor() {
                    StackExchange.prepareEditor({
                    heartbeatType: 'answer',
                    autoActivateHeartbeat: false,
                    convertImagesToLinks: true,
                    noModals: true,
                    showLowRepImageUploadWarning: true,
                    reputationToPostImages: 10,
                    bindNavPrevention: true,
                    postfix: "",
                    imageUploader: {
                    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                    allowUrls: true
                    },
                    noCode: true, onDemand: true,
                    discardSelector: ".discard-answer"
                    ,immediatelyShowMarkdownHelp:true
                    });


                    }
                    });














                    draft saved

                    draft discarded


















                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028339%2fwhere-does-the-cos-theta-1-2-sin2-theta-2-come-from%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown

























                    5 Answers
                    5






                    active

                    oldest

                    votes








                    5 Answers
                    5






                    active

                    oldest

                    votes









                    active

                    oldest

                    votes






                    active

                    oldest

                    votes









                    3












                    $begingroup$

                    It's a special case of the compound-angle formula $cos (A+B)=cos Acos B-sin Asin B$. Take $A=B=frac{theta}{2}$ so $costheta=cos^2frac{theta}{2}-sin^2frac{theta}{2}$. This can be written in two equivalent forms using $cos^2frac{theta}{2}+sin^2frac{theta}{2}=1$, one being $1-2sin^2frac{theta}{2}$ (the other is $2cos^2frac{theta}{2}-1$).






                    share|cite|improve this answer









                    $endgroup$


















                      3












                      $begingroup$

                      It's a special case of the compound-angle formula $cos (A+B)=cos Acos B-sin Asin B$. Take $A=B=frac{theta}{2}$ so $costheta=cos^2frac{theta}{2}-sin^2frac{theta}{2}$. This can be written in two equivalent forms using $cos^2frac{theta}{2}+sin^2frac{theta}{2}=1$, one being $1-2sin^2frac{theta}{2}$ (the other is $2cos^2frac{theta}{2}-1$).






                      share|cite|improve this answer









                      $endgroup$
















                        3












                        3








                        3





                        $begingroup$

                        It's a special case of the compound-angle formula $cos (A+B)=cos Acos B-sin Asin B$. Take $A=B=frac{theta}{2}$ so $costheta=cos^2frac{theta}{2}-sin^2frac{theta}{2}$. This can be written in two equivalent forms using $cos^2frac{theta}{2}+sin^2frac{theta}{2}=1$, one being $1-2sin^2frac{theta}{2}$ (the other is $2cos^2frac{theta}{2}-1$).






                        share|cite|improve this answer









                        $endgroup$



                        It's a special case of the compound-angle formula $cos (A+B)=cos Acos B-sin Asin B$. Take $A=B=frac{theta}{2}$ so $costheta=cos^2frac{theta}{2}-sin^2frac{theta}{2}$. This can be written in two equivalent forms using $cos^2frac{theta}{2}+sin^2frac{theta}{2}=1$, one being $1-2sin^2frac{theta}{2}$ (the other is $2cos^2frac{theta}{2}-1$).







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Dec 6 '18 at 11:00









                        J.G.J.G.

                        25.7k22540




                        25.7k22540























                            1












                            $begingroup$

                            $$
                            cos(2theta)=1-2sin^2(theta).
                            $$

                            Change $thetarightarrowtheta/2$.






                            share|cite|improve this answer









                            $endgroup$


















                              1












                              $begingroup$

                              $$
                              cos(2theta)=1-2sin^2(theta).
                              $$

                              Change $thetarightarrowtheta/2$.






                              share|cite|improve this answer









                              $endgroup$
















                                1












                                1








                                1





                                $begingroup$

                                $$
                                cos(2theta)=1-2sin^2(theta).
                                $$

                                Change $thetarightarrowtheta/2$.






                                share|cite|improve this answer









                                $endgroup$



                                $$
                                cos(2theta)=1-2sin^2(theta).
                                $$

                                Change $thetarightarrowtheta/2$.







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Dec 6 '18 at 11:00









                                JonJon

                                4,42511122




                                4,42511122























                                    1












                                    $begingroup$

                                    Hint: What happens if you use the double-angle identity for cosine and use the substitution $theta to frac{theta}{2}$?



                                    Also, note that



                                    $$cos(apm b) = cos acos bmpsin asin b$$



                                    which allows you to derive the double-angle identity.






                                    share|cite|improve this answer











                                    $endgroup$


















                                      1












                                      $begingroup$

                                      Hint: What happens if you use the double-angle identity for cosine and use the substitution $theta to frac{theta}{2}$?



                                      Also, note that



                                      $$cos(apm b) = cos acos bmpsin asin b$$



                                      which allows you to derive the double-angle identity.






                                      share|cite|improve this answer











                                      $endgroup$
















                                        1












                                        1








                                        1





                                        $begingroup$

                                        Hint: What happens if you use the double-angle identity for cosine and use the substitution $theta to frac{theta}{2}$?



                                        Also, note that



                                        $$cos(apm b) = cos acos bmpsin asin b$$



                                        which allows you to derive the double-angle identity.






                                        share|cite|improve this answer











                                        $endgroup$



                                        Hint: What happens if you use the double-angle identity for cosine and use the substitution $theta to frac{theta}{2}$?



                                        Also, note that



                                        $$cos(apm b) = cos acos bmpsin asin b$$



                                        which allows you to derive the double-angle identity.







                                        share|cite|improve this answer














                                        share|cite|improve this answer



                                        share|cite|improve this answer








                                        edited Dec 6 '18 at 11:11

























                                        answered Dec 6 '18 at 11:00









                                        KM101KM101

                                        5,9251524




                                        5,9251524























                                            0












                                            $begingroup$

                                            Hint: Use the definition of the half angle formula $$sin frac {theta} 2 = pm sqrt {frac {1 + cos theta}{2}}$$ Square both sides and manipulate as needed.






                                            share|cite|improve this answer









                                            $endgroup$


















                                              0












                                              $begingroup$

                                              Hint: Use the definition of the half angle formula $$sin frac {theta} 2 = pm sqrt {frac {1 + cos theta}{2}}$$ Square both sides and manipulate as needed.






                                              share|cite|improve this answer









                                              $endgroup$
















                                                0












                                                0








                                                0





                                                $begingroup$

                                                Hint: Use the definition of the half angle formula $$sin frac {theta} 2 = pm sqrt {frac {1 + cos theta}{2}}$$ Square both sides and manipulate as needed.






                                                share|cite|improve this answer









                                                $endgroup$



                                                Hint: Use the definition of the half angle formula $$sin frac {theta} 2 = pm sqrt {frac {1 + cos theta}{2}}$$ Square both sides and manipulate as needed.







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered Dec 6 '18 at 11:06









                                                bjcolby15bjcolby15

                                                1,29711016




                                                1,29711016























                                                    0












                                                    $begingroup$

                                                    De Moivre:$$cos^2alpha-sin^2alpha+2icosalphasinalpha=(cosalpha+isinalpha)^2=cos(2alpha)+2isin(2alpha)$$



                                                    So that: $$1-2sin^2alpha=cos^2alpha+sin^2alpha-2sin^2alpha=cos^2alpha-sin^2alpha=cos2alpha$$



                                                    Now substitute: $alpha=frac12theta$.






                                                    share|cite|improve this answer









                                                    $endgroup$


















                                                      0












                                                      $begingroup$

                                                      De Moivre:$$cos^2alpha-sin^2alpha+2icosalphasinalpha=(cosalpha+isinalpha)^2=cos(2alpha)+2isin(2alpha)$$



                                                      So that: $$1-2sin^2alpha=cos^2alpha+sin^2alpha-2sin^2alpha=cos^2alpha-sin^2alpha=cos2alpha$$



                                                      Now substitute: $alpha=frac12theta$.






                                                      share|cite|improve this answer









                                                      $endgroup$
















                                                        0












                                                        0








                                                        0





                                                        $begingroup$

                                                        De Moivre:$$cos^2alpha-sin^2alpha+2icosalphasinalpha=(cosalpha+isinalpha)^2=cos(2alpha)+2isin(2alpha)$$



                                                        So that: $$1-2sin^2alpha=cos^2alpha+sin^2alpha-2sin^2alpha=cos^2alpha-sin^2alpha=cos2alpha$$



                                                        Now substitute: $alpha=frac12theta$.






                                                        share|cite|improve this answer









                                                        $endgroup$



                                                        De Moivre:$$cos^2alpha-sin^2alpha+2icosalphasinalpha=(cosalpha+isinalpha)^2=cos(2alpha)+2isin(2alpha)$$



                                                        So that: $$1-2sin^2alpha=cos^2alpha+sin^2alpha-2sin^2alpha=cos^2alpha-sin^2alpha=cos2alpha$$



                                                        Now substitute: $alpha=frac12theta$.







                                                        share|cite|improve this answer












                                                        share|cite|improve this answer



                                                        share|cite|improve this answer










                                                        answered Dec 6 '18 at 11:07









                                                        drhabdrhab

                                                        101k544130




                                                        101k544130






























                                                            draft saved

                                                            draft discarded




















































                                                            Thanks for contributing an answer to Mathematics Stack Exchange!


                                                            • Please be sure to answer the question. Provide details and share your research!

                                                            But avoid



                                                            • Asking for help, clarification, or responding to other answers.

                                                            • Making statements based on opinion; back them up with references or personal experience.


                                                            Use MathJax to format equations. MathJax reference.


                                                            To learn more, see our tips on writing great answers.




                                                            draft saved


                                                            draft discarded














                                                            StackExchange.ready(
                                                            function () {
                                                            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028339%2fwhere-does-the-cos-theta-1-2-sin2-theta-2-come-from%23new-answer', 'question_page');
                                                            }
                                                            );

                                                            Post as a guest















                                                            Required, but never shown





















































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown

































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown







                                                            Popular posts from this blog

                                                            Plaza Victoria

                                                            Puebla de Zaragoza

                                                            Musa