where does the $cos(theta)=1-2sin^{2}(theta/2)$ come from?
$begingroup$
I have seen people using $cos(theta)=1-2sin^{2}(theta/2)$ but how do we get it?
trigonometry
$endgroup$
add a comment |
$begingroup$
I have seen people using $cos(theta)=1-2sin^{2}(theta/2)$ but how do we get it?
trigonometry
$endgroup$
add a comment |
$begingroup$
I have seen people using $cos(theta)=1-2sin^{2}(theta/2)$ but how do we get it?
trigonometry
$endgroup$
I have seen people using $cos(theta)=1-2sin^{2}(theta/2)$ but how do we get it?
trigonometry
trigonometry
edited Dec 6 '18 at 10:59
Tianlalu
3,08621038
3,08621038
asked Dec 6 '18 at 10:54
Student123Student123
536
536
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
It's a special case of the compound-angle formula $cos (A+B)=cos Acos B-sin Asin B$. Take $A=B=frac{theta}{2}$ so $costheta=cos^2frac{theta}{2}-sin^2frac{theta}{2}$. This can be written in two equivalent forms using $cos^2frac{theta}{2}+sin^2frac{theta}{2}=1$, one being $1-2sin^2frac{theta}{2}$ (the other is $2cos^2frac{theta}{2}-1$).
$endgroup$
add a comment |
$begingroup$
$$
cos(2theta)=1-2sin^2(theta).
$$
Change $thetarightarrowtheta/2$.
$endgroup$
add a comment |
$begingroup$
Hint: What happens if you use the double-angle identity for cosine and use the substitution $theta to frac{theta}{2}$?
Also, note that
$$cos(apm b) = cos acos bmpsin asin b$$
which allows you to derive the double-angle identity.
$endgroup$
add a comment |
$begingroup$
Hint: Use the definition of the half angle formula $$sin frac {theta} 2 = pm sqrt {frac {1 + cos theta}{2}}$$ Square both sides and manipulate as needed.
$endgroup$
add a comment |
$begingroup$
De Moivre:$$cos^2alpha-sin^2alpha+2icosalphasinalpha=(cosalpha+isinalpha)^2=cos(2alpha)+2isin(2alpha)$$
So that: $$1-2sin^2alpha=cos^2alpha+sin^2alpha-2sin^2alpha=cos^2alpha-sin^2alpha=cos2alpha$$
Now substitute: $alpha=frac12theta$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028339%2fwhere-does-the-cos-theta-1-2-sin2-theta-2-come-from%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It's a special case of the compound-angle formula $cos (A+B)=cos Acos B-sin Asin B$. Take $A=B=frac{theta}{2}$ so $costheta=cos^2frac{theta}{2}-sin^2frac{theta}{2}$. This can be written in two equivalent forms using $cos^2frac{theta}{2}+sin^2frac{theta}{2}=1$, one being $1-2sin^2frac{theta}{2}$ (the other is $2cos^2frac{theta}{2}-1$).
$endgroup$
add a comment |
$begingroup$
It's a special case of the compound-angle formula $cos (A+B)=cos Acos B-sin Asin B$. Take $A=B=frac{theta}{2}$ so $costheta=cos^2frac{theta}{2}-sin^2frac{theta}{2}$. This can be written in two equivalent forms using $cos^2frac{theta}{2}+sin^2frac{theta}{2}=1$, one being $1-2sin^2frac{theta}{2}$ (the other is $2cos^2frac{theta}{2}-1$).
$endgroup$
add a comment |
$begingroup$
It's a special case of the compound-angle formula $cos (A+B)=cos Acos B-sin Asin B$. Take $A=B=frac{theta}{2}$ so $costheta=cos^2frac{theta}{2}-sin^2frac{theta}{2}$. This can be written in two equivalent forms using $cos^2frac{theta}{2}+sin^2frac{theta}{2}=1$, one being $1-2sin^2frac{theta}{2}$ (the other is $2cos^2frac{theta}{2}-1$).
$endgroup$
It's a special case of the compound-angle formula $cos (A+B)=cos Acos B-sin Asin B$. Take $A=B=frac{theta}{2}$ so $costheta=cos^2frac{theta}{2}-sin^2frac{theta}{2}$. This can be written in two equivalent forms using $cos^2frac{theta}{2}+sin^2frac{theta}{2}=1$, one being $1-2sin^2frac{theta}{2}$ (the other is $2cos^2frac{theta}{2}-1$).
answered Dec 6 '18 at 11:00
J.G.J.G.
25.7k22540
25.7k22540
add a comment |
add a comment |
$begingroup$
$$
cos(2theta)=1-2sin^2(theta).
$$
Change $thetarightarrowtheta/2$.
$endgroup$
add a comment |
$begingroup$
$$
cos(2theta)=1-2sin^2(theta).
$$
Change $thetarightarrowtheta/2$.
$endgroup$
add a comment |
$begingroup$
$$
cos(2theta)=1-2sin^2(theta).
$$
Change $thetarightarrowtheta/2$.
$endgroup$
$$
cos(2theta)=1-2sin^2(theta).
$$
Change $thetarightarrowtheta/2$.
answered Dec 6 '18 at 11:00
JonJon
4,42511122
4,42511122
add a comment |
add a comment |
$begingroup$
Hint: What happens if you use the double-angle identity for cosine and use the substitution $theta to frac{theta}{2}$?
Also, note that
$$cos(apm b) = cos acos bmpsin asin b$$
which allows you to derive the double-angle identity.
$endgroup$
add a comment |
$begingroup$
Hint: What happens if you use the double-angle identity for cosine and use the substitution $theta to frac{theta}{2}$?
Also, note that
$$cos(apm b) = cos acos bmpsin asin b$$
which allows you to derive the double-angle identity.
$endgroup$
add a comment |
$begingroup$
Hint: What happens if you use the double-angle identity for cosine and use the substitution $theta to frac{theta}{2}$?
Also, note that
$$cos(apm b) = cos acos bmpsin asin b$$
which allows you to derive the double-angle identity.
$endgroup$
Hint: What happens if you use the double-angle identity for cosine and use the substitution $theta to frac{theta}{2}$?
Also, note that
$$cos(apm b) = cos acos bmpsin asin b$$
which allows you to derive the double-angle identity.
edited Dec 6 '18 at 11:11
answered Dec 6 '18 at 11:00
KM101KM101
5,9251524
5,9251524
add a comment |
add a comment |
$begingroup$
Hint: Use the definition of the half angle formula $$sin frac {theta} 2 = pm sqrt {frac {1 + cos theta}{2}}$$ Square both sides and manipulate as needed.
$endgroup$
add a comment |
$begingroup$
Hint: Use the definition of the half angle formula $$sin frac {theta} 2 = pm sqrt {frac {1 + cos theta}{2}}$$ Square both sides and manipulate as needed.
$endgroup$
add a comment |
$begingroup$
Hint: Use the definition of the half angle formula $$sin frac {theta} 2 = pm sqrt {frac {1 + cos theta}{2}}$$ Square both sides and manipulate as needed.
$endgroup$
Hint: Use the definition of the half angle formula $$sin frac {theta} 2 = pm sqrt {frac {1 + cos theta}{2}}$$ Square both sides and manipulate as needed.
answered Dec 6 '18 at 11:06
bjcolby15bjcolby15
1,29711016
1,29711016
add a comment |
add a comment |
$begingroup$
De Moivre:$$cos^2alpha-sin^2alpha+2icosalphasinalpha=(cosalpha+isinalpha)^2=cos(2alpha)+2isin(2alpha)$$
So that: $$1-2sin^2alpha=cos^2alpha+sin^2alpha-2sin^2alpha=cos^2alpha-sin^2alpha=cos2alpha$$
Now substitute: $alpha=frac12theta$.
$endgroup$
add a comment |
$begingroup$
De Moivre:$$cos^2alpha-sin^2alpha+2icosalphasinalpha=(cosalpha+isinalpha)^2=cos(2alpha)+2isin(2alpha)$$
So that: $$1-2sin^2alpha=cos^2alpha+sin^2alpha-2sin^2alpha=cos^2alpha-sin^2alpha=cos2alpha$$
Now substitute: $alpha=frac12theta$.
$endgroup$
add a comment |
$begingroup$
De Moivre:$$cos^2alpha-sin^2alpha+2icosalphasinalpha=(cosalpha+isinalpha)^2=cos(2alpha)+2isin(2alpha)$$
So that: $$1-2sin^2alpha=cos^2alpha+sin^2alpha-2sin^2alpha=cos^2alpha-sin^2alpha=cos2alpha$$
Now substitute: $alpha=frac12theta$.
$endgroup$
De Moivre:$$cos^2alpha-sin^2alpha+2icosalphasinalpha=(cosalpha+isinalpha)^2=cos(2alpha)+2isin(2alpha)$$
So that: $$1-2sin^2alpha=cos^2alpha+sin^2alpha-2sin^2alpha=cos^2alpha-sin^2alpha=cos2alpha$$
Now substitute: $alpha=frac12theta$.
answered Dec 6 '18 at 11:07
drhabdrhab
101k544130
101k544130
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028339%2fwhere-does-the-cos-theta-1-2-sin2-theta-2-come-from%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown