System of Trigonomtric Equations [closed]












0












$begingroup$


Please Help to solve the following problem :-
If,
$$sin(x+y)=a$$
$$cos(x-y)=b$$
$$a,bin Bbb R^+$$
Find $tan(2x)$ in terms of a and b.










share|cite|improve this question











$endgroup$



closed as off-topic by Nosrati, Jack D'Aurizio, Saad, mrtaurho, Lord_Farin Dec 23 '18 at 11:07


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Nosrati, Jack D'Aurizio, Saad, mrtaurho, Lord_Farin

If this question can be reworded to fit the rules in the help center, please edit the question.












  • 4




    $begingroup$
    $$tan2x=tan(x+y+x-y)=dfrac{tan(x+y)+tan(x-y)}{1-tan(x+y)tan(x-y)}$$
    $endgroup$
    – Nosrati
    Dec 9 '18 at 16:39










  • $begingroup$
    Oh god thats genius, why didnt i think of that!
    $endgroup$
    – Etotheipi
    Dec 9 '18 at 16:42










  • $begingroup$
    @Nosrati,But the question asks for tan(2x) in terms of a and b
    $endgroup$
    – Dhamnekar Winod
    Dec 9 '18 at 16:48










  • $begingroup$
    Write $tan=dfrac{sin}{cos}$.
    $endgroup$
    – Nosrati
    Dec 9 '18 at 16:50










  • $begingroup$
    @DhamnekarWinod You just use $tan x = frac{sin x}{cos x}$ and $cos x = sqrt{1-x^2}$.
    $endgroup$
    – KM101
    Dec 9 '18 at 16:53
















0












$begingroup$


Please Help to solve the following problem :-
If,
$$sin(x+y)=a$$
$$cos(x-y)=b$$
$$a,bin Bbb R^+$$
Find $tan(2x)$ in terms of a and b.










share|cite|improve this question











$endgroup$



closed as off-topic by Nosrati, Jack D'Aurizio, Saad, mrtaurho, Lord_Farin Dec 23 '18 at 11:07


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Nosrati, Jack D'Aurizio, Saad, mrtaurho, Lord_Farin

If this question can be reworded to fit the rules in the help center, please edit the question.












  • 4




    $begingroup$
    $$tan2x=tan(x+y+x-y)=dfrac{tan(x+y)+tan(x-y)}{1-tan(x+y)tan(x-y)}$$
    $endgroup$
    – Nosrati
    Dec 9 '18 at 16:39










  • $begingroup$
    Oh god thats genius, why didnt i think of that!
    $endgroup$
    – Etotheipi
    Dec 9 '18 at 16:42










  • $begingroup$
    @Nosrati,But the question asks for tan(2x) in terms of a and b
    $endgroup$
    – Dhamnekar Winod
    Dec 9 '18 at 16:48










  • $begingroup$
    Write $tan=dfrac{sin}{cos}$.
    $endgroup$
    – Nosrati
    Dec 9 '18 at 16:50










  • $begingroup$
    @DhamnekarWinod You just use $tan x = frac{sin x}{cos x}$ and $cos x = sqrt{1-x^2}$.
    $endgroup$
    – KM101
    Dec 9 '18 at 16:53














0












0








0





$begingroup$


Please Help to solve the following problem :-
If,
$$sin(x+y)=a$$
$$cos(x-y)=b$$
$$a,bin Bbb R^+$$
Find $tan(2x)$ in terms of a and b.










share|cite|improve this question











$endgroup$




Please Help to solve the following problem :-
If,
$$sin(x+y)=a$$
$$cos(x-y)=b$$
$$a,bin Bbb R^+$$
Find $tan(2x)$ in terms of a and b.







trigonometry systems-of-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 9 '18 at 16:44









glowstonetrees

2,368418




2,368418










asked Dec 9 '18 at 16:27









EtotheipiEtotheipi

344




344




closed as off-topic by Nosrati, Jack D'Aurizio, Saad, mrtaurho, Lord_Farin Dec 23 '18 at 11:07


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Nosrati, Jack D'Aurizio, Saad, mrtaurho, Lord_Farin

If this question can be reworded to fit the rules in the help center, please edit the question.







closed as off-topic by Nosrati, Jack D'Aurizio, Saad, mrtaurho, Lord_Farin Dec 23 '18 at 11:07


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Nosrati, Jack D'Aurizio, Saad, mrtaurho, Lord_Farin

If this question can be reworded to fit the rules in the help center, please edit the question.








  • 4




    $begingroup$
    $$tan2x=tan(x+y+x-y)=dfrac{tan(x+y)+tan(x-y)}{1-tan(x+y)tan(x-y)}$$
    $endgroup$
    – Nosrati
    Dec 9 '18 at 16:39










  • $begingroup$
    Oh god thats genius, why didnt i think of that!
    $endgroup$
    – Etotheipi
    Dec 9 '18 at 16:42










  • $begingroup$
    @Nosrati,But the question asks for tan(2x) in terms of a and b
    $endgroup$
    – Dhamnekar Winod
    Dec 9 '18 at 16:48










  • $begingroup$
    Write $tan=dfrac{sin}{cos}$.
    $endgroup$
    – Nosrati
    Dec 9 '18 at 16:50










  • $begingroup$
    @DhamnekarWinod You just use $tan x = frac{sin x}{cos x}$ and $cos x = sqrt{1-x^2}$.
    $endgroup$
    – KM101
    Dec 9 '18 at 16:53














  • 4




    $begingroup$
    $$tan2x=tan(x+y+x-y)=dfrac{tan(x+y)+tan(x-y)}{1-tan(x+y)tan(x-y)}$$
    $endgroup$
    – Nosrati
    Dec 9 '18 at 16:39










  • $begingroup$
    Oh god thats genius, why didnt i think of that!
    $endgroup$
    – Etotheipi
    Dec 9 '18 at 16:42










  • $begingroup$
    @Nosrati,But the question asks for tan(2x) in terms of a and b
    $endgroup$
    – Dhamnekar Winod
    Dec 9 '18 at 16:48










  • $begingroup$
    Write $tan=dfrac{sin}{cos}$.
    $endgroup$
    – Nosrati
    Dec 9 '18 at 16:50










  • $begingroup$
    @DhamnekarWinod You just use $tan x = frac{sin x}{cos x}$ and $cos x = sqrt{1-x^2}$.
    $endgroup$
    – KM101
    Dec 9 '18 at 16:53








4




4




$begingroup$
$$tan2x=tan(x+y+x-y)=dfrac{tan(x+y)+tan(x-y)}{1-tan(x+y)tan(x-y)}$$
$endgroup$
– Nosrati
Dec 9 '18 at 16:39




$begingroup$
$$tan2x=tan(x+y+x-y)=dfrac{tan(x+y)+tan(x-y)}{1-tan(x+y)tan(x-y)}$$
$endgroup$
– Nosrati
Dec 9 '18 at 16:39












$begingroup$
Oh god thats genius, why didnt i think of that!
$endgroup$
– Etotheipi
Dec 9 '18 at 16:42




$begingroup$
Oh god thats genius, why didnt i think of that!
$endgroup$
– Etotheipi
Dec 9 '18 at 16:42












$begingroup$
@Nosrati,But the question asks for tan(2x) in terms of a and b
$endgroup$
– Dhamnekar Winod
Dec 9 '18 at 16:48




$begingroup$
@Nosrati,But the question asks for tan(2x) in terms of a and b
$endgroup$
– Dhamnekar Winod
Dec 9 '18 at 16:48












$begingroup$
Write $tan=dfrac{sin}{cos}$.
$endgroup$
– Nosrati
Dec 9 '18 at 16:50




$begingroup$
Write $tan=dfrac{sin}{cos}$.
$endgroup$
– Nosrati
Dec 9 '18 at 16:50












$begingroup$
@DhamnekarWinod You just use $tan x = frac{sin x}{cos x}$ and $cos x = sqrt{1-x^2}$.
$endgroup$
– KM101
Dec 9 '18 at 16:53




$begingroup$
@DhamnekarWinod You just use $tan x = frac{sin x}{cos x}$ and $cos x = sqrt{1-x^2}$.
$endgroup$
– KM101
Dec 9 '18 at 16:53










2 Answers
2






active

oldest

votes


















1












$begingroup$

$$
x+y = arcsin a\
x-y = arccos b
$$



then



$$
2x = arcsin a + arccos b to tan(2x) = frac{asqrt{1-a^2}+b sqrt{1-b^2}}{b^2-a^2}
$$



NOTE



$$
tan(u+v) = frac{sin (u) cos (v)}{cos (u) cos (v)-sin (u) sin (v)}+frac{cos (u) sin (v)}{cos (u) cos (v)-sin (u) sin (v)}
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    ,is your answer is equivalent to the answer given by Chris Custer?$sqrt{1-a^2}=cos{(x+y)}$ and$b^2-a^2=cos^2{(x-y)}-sin^2{(x+y)}$ am I right?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:22












  • $begingroup$
    ,How did you calculate $tan{(2x)}$? What is the use of your reference note? What are u and v?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:34












  • $begingroup$
    @DhamnekarWinod In the reference note we have a trigonometric identity. Here $u = arcsin a, v=arccos b$. Now we have $sin(arcsin a) = a, sinarccos a = sqrt{1-a^2}$ etc.
    $endgroup$
    – Cesareo
    Dec 10 '18 at 16:54












  • $begingroup$
    @Casareo,$tan{(2x)}=frac{sin{(2x)}}{cos{(2x)}}$ and $sin{(2x)}=ab+sqrt{(1-a^2)}sqrt{(1-b^2)}$ But your numerator is $asqrt{(1-a^2)}+bsqrt{(1-b^2)}$ How is that?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 17:21












  • $begingroup$
    @DhamnekarWinod Please. Refer to me as Cesareo. We have $tan left(sin ^{-1}(a)+cos ^{-1}(b)right) = frac{a b}{sqrt{1-a^2} b-a sqrt{1-b^2}}+frac{sqrt{1-a^2} sqrt{1-b^2}}{sqrt{1-a^2} b-a sqrt{1-b^2}}$ and after simplifivcations we have $frac{asqrt{1-a^2} +b sqrt{1-b^2}}{b^2-a^2}$
    $endgroup$
    – Cesareo
    Dec 10 '18 at 17:38





















2












$begingroup$

$cos2x=cos(x+y+x-y)=cos(x+y)cos(x-y)-sin(x+y)sin(x-y)= asqrt{1-b^2}- bsqrt{1-a^2}$.



Similarly $sin2x=sin(x+y+x-y)=sin(x+y)cos(x-y)+cos(x+y)sin(x-y)=sqrt{1-a^2}sqrt{1-b^2}+ab$.



Thus...?



Note: this works for quadrant $1$. In $2,3$ and $4$ you need to change some signs.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    You forgot to deal with the signs of the involved square roots. $sin(z)=a$ does not automatically imply $cos(z)=sqrt{1-a^2}$.
    $endgroup$
    – Jack D'Aurizio
    Dec 9 '18 at 16:50










  • $begingroup$
    well, $a.b$ are infact positive, so maybe we can ignore the signs in square root
    $endgroup$
    – Etotheipi
    Dec 9 '18 at 16:51










  • $begingroup$
    No. The positivity of $sin(x+y)$ does not imply the positivity of $cos(x+y)$.
    $endgroup$
    – Jack D'Aurizio
    Dec 9 '18 at 16:52










  • $begingroup$
    @Chris Custer, is more simplification of $tan{(2x)}$ possible?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:48










  • $begingroup$
    Nothing really jumps out at me. You could probably get the radicals out of the denominator; but I would just leave it.
    $endgroup$
    – Chris Custer
    Dec 10 '18 at 15:20


















2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

$$
x+y = arcsin a\
x-y = arccos b
$$



then



$$
2x = arcsin a + arccos b to tan(2x) = frac{asqrt{1-a^2}+b sqrt{1-b^2}}{b^2-a^2}
$$



NOTE



$$
tan(u+v) = frac{sin (u) cos (v)}{cos (u) cos (v)-sin (u) sin (v)}+frac{cos (u) sin (v)}{cos (u) cos (v)-sin (u) sin (v)}
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    ,is your answer is equivalent to the answer given by Chris Custer?$sqrt{1-a^2}=cos{(x+y)}$ and$b^2-a^2=cos^2{(x-y)}-sin^2{(x+y)}$ am I right?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:22












  • $begingroup$
    ,How did you calculate $tan{(2x)}$? What is the use of your reference note? What are u and v?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:34












  • $begingroup$
    @DhamnekarWinod In the reference note we have a trigonometric identity. Here $u = arcsin a, v=arccos b$. Now we have $sin(arcsin a) = a, sinarccos a = sqrt{1-a^2}$ etc.
    $endgroup$
    – Cesareo
    Dec 10 '18 at 16:54












  • $begingroup$
    @Casareo,$tan{(2x)}=frac{sin{(2x)}}{cos{(2x)}}$ and $sin{(2x)}=ab+sqrt{(1-a^2)}sqrt{(1-b^2)}$ But your numerator is $asqrt{(1-a^2)}+bsqrt{(1-b^2)}$ How is that?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 17:21












  • $begingroup$
    @DhamnekarWinod Please. Refer to me as Cesareo. We have $tan left(sin ^{-1}(a)+cos ^{-1}(b)right) = frac{a b}{sqrt{1-a^2} b-a sqrt{1-b^2}}+frac{sqrt{1-a^2} sqrt{1-b^2}}{sqrt{1-a^2} b-a sqrt{1-b^2}}$ and after simplifivcations we have $frac{asqrt{1-a^2} +b sqrt{1-b^2}}{b^2-a^2}$
    $endgroup$
    – Cesareo
    Dec 10 '18 at 17:38


















1












$begingroup$

$$
x+y = arcsin a\
x-y = arccos b
$$



then



$$
2x = arcsin a + arccos b to tan(2x) = frac{asqrt{1-a^2}+b sqrt{1-b^2}}{b^2-a^2}
$$



NOTE



$$
tan(u+v) = frac{sin (u) cos (v)}{cos (u) cos (v)-sin (u) sin (v)}+frac{cos (u) sin (v)}{cos (u) cos (v)-sin (u) sin (v)}
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    ,is your answer is equivalent to the answer given by Chris Custer?$sqrt{1-a^2}=cos{(x+y)}$ and$b^2-a^2=cos^2{(x-y)}-sin^2{(x+y)}$ am I right?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:22












  • $begingroup$
    ,How did you calculate $tan{(2x)}$? What is the use of your reference note? What are u and v?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:34












  • $begingroup$
    @DhamnekarWinod In the reference note we have a trigonometric identity. Here $u = arcsin a, v=arccos b$. Now we have $sin(arcsin a) = a, sinarccos a = sqrt{1-a^2}$ etc.
    $endgroup$
    – Cesareo
    Dec 10 '18 at 16:54












  • $begingroup$
    @Casareo,$tan{(2x)}=frac{sin{(2x)}}{cos{(2x)}}$ and $sin{(2x)}=ab+sqrt{(1-a^2)}sqrt{(1-b^2)}$ But your numerator is $asqrt{(1-a^2)}+bsqrt{(1-b^2)}$ How is that?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 17:21












  • $begingroup$
    @DhamnekarWinod Please. Refer to me as Cesareo. We have $tan left(sin ^{-1}(a)+cos ^{-1}(b)right) = frac{a b}{sqrt{1-a^2} b-a sqrt{1-b^2}}+frac{sqrt{1-a^2} sqrt{1-b^2}}{sqrt{1-a^2} b-a sqrt{1-b^2}}$ and after simplifivcations we have $frac{asqrt{1-a^2} +b sqrt{1-b^2}}{b^2-a^2}$
    $endgroup$
    – Cesareo
    Dec 10 '18 at 17:38
















1












1








1





$begingroup$

$$
x+y = arcsin a\
x-y = arccos b
$$



then



$$
2x = arcsin a + arccos b to tan(2x) = frac{asqrt{1-a^2}+b sqrt{1-b^2}}{b^2-a^2}
$$



NOTE



$$
tan(u+v) = frac{sin (u) cos (v)}{cos (u) cos (v)-sin (u) sin (v)}+frac{cos (u) sin (v)}{cos (u) cos (v)-sin (u) sin (v)}
$$






share|cite|improve this answer











$endgroup$



$$
x+y = arcsin a\
x-y = arccos b
$$



then



$$
2x = arcsin a + arccos b to tan(2x) = frac{asqrt{1-a^2}+b sqrt{1-b^2}}{b^2-a^2}
$$



NOTE



$$
tan(u+v) = frac{sin (u) cos (v)}{cos (u) cos (v)-sin (u) sin (v)}+frac{cos (u) sin (v)}{cos (u) cos (v)-sin (u) sin (v)}
$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 9 '18 at 17:19

























answered Dec 9 '18 at 17:13









CesareoCesareo

8,8993516




8,8993516












  • $begingroup$
    ,is your answer is equivalent to the answer given by Chris Custer?$sqrt{1-a^2}=cos{(x+y)}$ and$b^2-a^2=cos^2{(x-y)}-sin^2{(x+y)}$ am I right?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:22












  • $begingroup$
    ,How did you calculate $tan{(2x)}$? What is the use of your reference note? What are u and v?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:34












  • $begingroup$
    @DhamnekarWinod In the reference note we have a trigonometric identity. Here $u = arcsin a, v=arccos b$. Now we have $sin(arcsin a) = a, sinarccos a = sqrt{1-a^2}$ etc.
    $endgroup$
    – Cesareo
    Dec 10 '18 at 16:54












  • $begingroup$
    @Casareo,$tan{(2x)}=frac{sin{(2x)}}{cos{(2x)}}$ and $sin{(2x)}=ab+sqrt{(1-a^2)}sqrt{(1-b^2)}$ But your numerator is $asqrt{(1-a^2)}+bsqrt{(1-b^2)}$ How is that?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 17:21












  • $begingroup$
    @DhamnekarWinod Please. Refer to me as Cesareo. We have $tan left(sin ^{-1}(a)+cos ^{-1}(b)right) = frac{a b}{sqrt{1-a^2} b-a sqrt{1-b^2}}+frac{sqrt{1-a^2} sqrt{1-b^2}}{sqrt{1-a^2} b-a sqrt{1-b^2}}$ and after simplifivcations we have $frac{asqrt{1-a^2} +b sqrt{1-b^2}}{b^2-a^2}$
    $endgroup$
    – Cesareo
    Dec 10 '18 at 17:38




















  • $begingroup$
    ,is your answer is equivalent to the answer given by Chris Custer?$sqrt{1-a^2}=cos{(x+y)}$ and$b^2-a^2=cos^2{(x-y)}-sin^2{(x+y)}$ am I right?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:22












  • $begingroup$
    ,How did you calculate $tan{(2x)}$? What is the use of your reference note? What are u and v?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:34












  • $begingroup$
    @DhamnekarWinod In the reference note we have a trigonometric identity. Here $u = arcsin a, v=arccos b$. Now we have $sin(arcsin a) = a, sinarccos a = sqrt{1-a^2}$ etc.
    $endgroup$
    – Cesareo
    Dec 10 '18 at 16:54












  • $begingroup$
    @Casareo,$tan{(2x)}=frac{sin{(2x)}}{cos{(2x)}}$ and $sin{(2x)}=ab+sqrt{(1-a^2)}sqrt{(1-b^2)}$ But your numerator is $asqrt{(1-a^2)}+bsqrt{(1-b^2)}$ How is that?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 17:21












  • $begingroup$
    @DhamnekarWinod Please. Refer to me as Cesareo. We have $tan left(sin ^{-1}(a)+cos ^{-1}(b)right) = frac{a b}{sqrt{1-a^2} b-a sqrt{1-b^2}}+frac{sqrt{1-a^2} sqrt{1-b^2}}{sqrt{1-a^2} b-a sqrt{1-b^2}}$ and after simplifivcations we have $frac{asqrt{1-a^2} +b sqrt{1-b^2}}{b^2-a^2}$
    $endgroup$
    – Cesareo
    Dec 10 '18 at 17:38


















$begingroup$
,is your answer is equivalent to the answer given by Chris Custer?$sqrt{1-a^2}=cos{(x+y)}$ and$b^2-a^2=cos^2{(x-y)}-sin^2{(x+y)}$ am I right?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 12:22






$begingroup$
,is your answer is equivalent to the answer given by Chris Custer?$sqrt{1-a^2}=cos{(x+y)}$ and$b^2-a^2=cos^2{(x-y)}-sin^2{(x+y)}$ am I right?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 12:22














$begingroup$
,How did you calculate $tan{(2x)}$? What is the use of your reference note? What are u and v?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 12:34






$begingroup$
,How did you calculate $tan{(2x)}$? What is the use of your reference note? What are u and v?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 12:34














$begingroup$
@DhamnekarWinod In the reference note we have a trigonometric identity. Here $u = arcsin a, v=arccos b$. Now we have $sin(arcsin a) = a, sinarccos a = sqrt{1-a^2}$ etc.
$endgroup$
– Cesareo
Dec 10 '18 at 16:54






$begingroup$
@DhamnekarWinod In the reference note we have a trigonometric identity. Here $u = arcsin a, v=arccos b$. Now we have $sin(arcsin a) = a, sinarccos a = sqrt{1-a^2}$ etc.
$endgroup$
– Cesareo
Dec 10 '18 at 16:54














$begingroup$
@Casareo,$tan{(2x)}=frac{sin{(2x)}}{cos{(2x)}}$ and $sin{(2x)}=ab+sqrt{(1-a^2)}sqrt{(1-b^2)}$ But your numerator is $asqrt{(1-a^2)}+bsqrt{(1-b^2)}$ How is that?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 17:21






$begingroup$
@Casareo,$tan{(2x)}=frac{sin{(2x)}}{cos{(2x)}}$ and $sin{(2x)}=ab+sqrt{(1-a^2)}sqrt{(1-b^2)}$ But your numerator is $asqrt{(1-a^2)}+bsqrt{(1-b^2)}$ How is that?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 17:21














$begingroup$
@DhamnekarWinod Please. Refer to me as Cesareo. We have $tan left(sin ^{-1}(a)+cos ^{-1}(b)right) = frac{a b}{sqrt{1-a^2} b-a sqrt{1-b^2}}+frac{sqrt{1-a^2} sqrt{1-b^2}}{sqrt{1-a^2} b-a sqrt{1-b^2}}$ and after simplifivcations we have $frac{asqrt{1-a^2} +b sqrt{1-b^2}}{b^2-a^2}$
$endgroup$
– Cesareo
Dec 10 '18 at 17:38






$begingroup$
@DhamnekarWinod Please. Refer to me as Cesareo. We have $tan left(sin ^{-1}(a)+cos ^{-1}(b)right) = frac{a b}{sqrt{1-a^2} b-a sqrt{1-b^2}}+frac{sqrt{1-a^2} sqrt{1-b^2}}{sqrt{1-a^2} b-a sqrt{1-b^2}}$ and after simplifivcations we have $frac{asqrt{1-a^2} +b sqrt{1-b^2}}{b^2-a^2}$
$endgroup$
– Cesareo
Dec 10 '18 at 17:38













2












$begingroup$

$cos2x=cos(x+y+x-y)=cos(x+y)cos(x-y)-sin(x+y)sin(x-y)= asqrt{1-b^2}- bsqrt{1-a^2}$.



Similarly $sin2x=sin(x+y+x-y)=sin(x+y)cos(x-y)+cos(x+y)sin(x-y)=sqrt{1-a^2}sqrt{1-b^2}+ab$.



Thus...?



Note: this works for quadrant $1$. In $2,3$ and $4$ you need to change some signs.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    You forgot to deal with the signs of the involved square roots. $sin(z)=a$ does not automatically imply $cos(z)=sqrt{1-a^2}$.
    $endgroup$
    – Jack D'Aurizio
    Dec 9 '18 at 16:50










  • $begingroup$
    well, $a.b$ are infact positive, so maybe we can ignore the signs in square root
    $endgroup$
    – Etotheipi
    Dec 9 '18 at 16:51










  • $begingroup$
    No. The positivity of $sin(x+y)$ does not imply the positivity of $cos(x+y)$.
    $endgroup$
    – Jack D'Aurizio
    Dec 9 '18 at 16:52










  • $begingroup$
    @Chris Custer, is more simplification of $tan{(2x)}$ possible?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:48










  • $begingroup$
    Nothing really jumps out at me. You could probably get the radicals out of the denominator; but I would just leave it.
    $endgroup$
    – Chris Custer
    Dec 10 '18 at 15:20
















2












$begingroup$

$cos2x=cos(x+y+x-y)=cos(x+y)cos(x-y)-sin(x+y)sin(x-y)= asqrt{1-b^2}- bsqrt{1-a^2}$.



Similarly $sin2x=sin(x+y+x-y)=sin(x+y)cos(x-y)+cos(x+y)sin(x-y)=sqrt{1-a^2}sqrt{1-b^2}+ab$.



Thus...?



Note: this works for quadrant $1$. In $2,3$ and $4$ you need to change some signs.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    You forgot to deal with the signs of the involved square roots. $sin(z)=a$ does not automatically imply $cos(z)=sqrt{1-a^2}$.
    $endgroup$
    – Jack D'Aurizio
    Dec 9 '18 at 16:50










  • $begingroup$
    well, $a.b$ are infact positive, so maybe we can ignore the signs in square root
    $endgroup$
    – Etotheipi
    Dec 9 '18 at 16:51










  • $begingroup$
    No. The positivity of $sin(x+y)$ does not imply the positivity of $cos(x+y)$.
    $endgroup$
    – Jack D'Aurizio
    Dec 9 '18 at 16:52










  • $begingroup$
    @Chris Custer, is more simplification of $tan{(2x)}$ possible?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:48










  • $begingroup$
    Nothing really jumps out at me. You could probably get the radicals out of the denominator; but I would just leave it.
    $endgroup$
    – Chris Custer
    Dec 10 '18 at 15:20














2












2








2





$begingroup$

$cos2x=cos(x+y+x-y)=cos(x+y)cos(x-y)-sin(x+y)sin(x-y)= asqrt{1-b^2}- bsqrt{1-a^2}$.



Similarly $sin2x=sin(x+y+x-y)=sin(x+y)cos(x-y)+cos(x+y)sin(x-y)=sqrt{1-a^2}sqrt{1-b^2}+ab$.



Thus...?



Note: this works for quadrant $1$. In $2,3$ and $4$ you need to change some signs.






share|cite|improve this answer











$endgroup$



$cos2x=cos(x+y+x-y)=cos(x+y)cos(x-y)-sin(x+y)sin(x-y)= asqrt{1-b^2}- bsqrt{1-a^2}$.



Similarly $sin2x=sin(x+y+x-y)=sin(x+y)cos(x-y)+cos(x+y)sin(x-y)=sqrt{1-a^2}sqrt{1-b^2}+ab$.



Thus...?



Note: this works for quadrant $1$. In $2,3$ and $4$ you need to change some signs.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 9 '18 at 17:23

























answered Dec 9 '18 at 16:48









Chris CusterChris Custer

13.4k3827




13.4k3827












  • $begingroup$
    You forgot to deal with the signs of the involved square roots. $sin(z)=a$ does not automatically imply $cos(z)=sqrt{1-a^2}$.
    $endgroup$
    – Jack D'Aurizio
    Dec 9 '18 at 16:50










  • $begingroup$
    well, $a.b$ are infact positive, so maybe we can ignore the signs in square root
    $endgroup$
    – Etotheipi
    Dec 9 '18 at 16:51










  • $begingroup$
    No. The positivity of $sin(x+y)$ does not imply the positivity of $cos(x+y)$.
    $endgroup$
    – Jack D'Aurizio
    Dec 9 '18 at 16:52










  • $begingroup$
    @Chris Custer, is more simplification of $tan{(2x)}$ possible?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:48










  • $begingroup$
    Nothing really jumps out at me. You could probably get the radicals out of the denominator; but I would just leave it.
    $endgroup$
    – Chris Custer
    Dec 10 '18 at 15:20


















  • $begingroup$
    You forgot to deal with the signs of the involved square roots. $sin(z)=a$ does not automatically imply $cos(z)=sqrt{1-a^2}$.
    $endgroup$
    – Jack D'Aurizio
    Dec 9 '18 at 16:50










  • $begingroup$
    well, $a.b$ are infact positive, so maybe we can ignore the signs in square root
    $endgroup$
    – Etotheipi
    Dec 9 '18 at 16:51










  • $begingroup$
    No. The positivity of $sin(x+y)$ does not imply the positivity of $cos(x+y)$.
    $endgroup$
    – Jack D'Aurizio
    Dec 9 '18 at 16:52










  • $begingroup$
    @Chris Custer, is more simplification of $tan{(2x)}$ possible?
    $endgroup$
    – Dhamnekar Winod
    Dec 10 '18 at 12:48










  • $begingroup$
    Nothing really jumps out at me. You could probably get the radicals out of the denominator; but I would just leave it.
    $endgroup$
    – Chris Custer
    Dec 10 '18 at 15:20
















$begingroup$
You forgot to deal with the signs of the involved square roots. $sin(z)=a$ does not automatically imply $cos(z)=sqrt{1-a^2}$.
$endgroup$
– Jack D'Aurizio
Dec 9 '18 at 16:50




$begingroup$
You forgot to deal with the signs of the involved square roots. $sin(z)=a$ does not automatically imply $cos(z)=sqrt{1-a^2}$.
$endgroup$
– Jack D'Aurizio
Dec 9 '18 at 16:50












$begingroup$
well, $a.b$ are infact positive, so maybe we can ignore the signs in square root
$endgroup$
– Etotheipi
Dec 9 '18 at 16:51




$begingroup$
well, $a.b$ are infact positive, so maybe we can ignore the signs in square root
$endgroup$
– Etotheipi
Dec 9 '18 at 16:51












$begingroup$
No. The positivity of $sin(x+y)$ does not imply the positivity of $cos(x+y)$.
$endgroup$
– Jack D'Aurizio
Dec 9 '18 at 16:52




$begingroup$
No. The positivity of $sin(x+y)$ does not imply the positivity of $cos(x+y)$.
$endgroup$
– Jack D'Aurizio
Dec 9 '18 at 16:52












$begingroup$
@Chris Custer, is more simplification of $tan{(2x)}$ possible?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 12:48




$begingroup$
@Chris Custer, is more simplification of $tan{(2x)}$ possible?
$endgroup$
– Dhamnekar Winod
Dec 10 '18 at 12:48












$begingroup$
Nothing really jumps out at me. You could probably get the radicals out of the denominator; but I would just leave it.
$endgroup$
– Chris Custer
Dec 10 '18 at 15:20




$begingroup$
Nothing really jumps out at me. You could probably get the radicals out of the denominator; but I would just leave it.
$endgroup$
– Chris Custer
Dec 10 '18 at 15:20



Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa