Inverse Fourier transformation of $frac{1}{(1+w^2)^2}$?
$begingroup$
I have tried to crack this via basic definition, but I am unable to solve the integral:
$$int_{-infty} ^{infty} frac{1}{(1+w^2)^2} e^{-iwx} dw $$
Kindly guide me a bit.
Thanks in anticipation.
fourier-analysis fourier-transform
$endgroup$
add a comment |
$begingroup$
I have tried to crack this via basic definition, but I am unable to solve the integral:
$$int_{-infty} ^{infty} frac{1}{(1+w^2)^2} e^{-iwx} dw $$
Kindly guide me a bit.
Thanks in anticipation.
fourier-analysis fourier-transform
$endgroup$
add a comment |
$begingroup$
I have tried to crack this via basic definition, but I am unable to solve the integral:
$$int_{-infty} ^{infty} frac{1}{(1+w^2)^2} e^{-iwx} dw $$
Kindly guide me a bit.
Thanks in anticipation.
fourier-analysis fourier-transform
$endgroup$
I have tried to crack this via basic definition, but I am unable to solve the integral:
$$int_{-infty} ^{infty} frac{1}{(1+w^2)^2} e^{-iwx} dw $$
Kindly guide me a bit.
Thanks in anticipation.
fourier-analysis fourier-transform
fourier-analysis fourier-transform
edited Dec 19 '18 at 7:09
dmtri
1,7632521
1,7632521
asked Dec 19 '18 at 6:36
CommandoCommando
133
133
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You can avoid doing the integral if you know the Fourier transform of $1/(1+w^2)$
(which is $pi e^{-|x|}$) and recall that the Fourier transform converts multiplication
into convolution.
Therefore, for $g(x)=e^{-|x|}$,
$$int_{-infty}^inftyfrac{e^{-iwx},dw}{(1+w^2)^2}
=g*g(x)=int_{-infty}^infty g(y)g(x-y),dy
=pi^2int_{-infty}^inftyexp(-|y|-|x-y|),dy.$$
One can split this into three integrals over intervals where $-|y|-|x-y|$
is linear on each.
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046079%2finverse-fourier-transformation-of-frac11w22%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can avoid doing the integral if you know the Fourier transform of $1/(1+w^2)$
(which is $pi e^{-|x|}$) and recall that the Fourier transform converts multiplication
into convolution.
Therefore, for $g(x)=e^{-|x|}$,
$$int_{-infty}^inftyfrac{e^{-iwx},dw}{(1+w^2)^2}
=g*g(x)=int_{-infty}^infty g(y)g(x-y),dy
=pi^2int_{-infty}^inftyexp(-|y|-|x-y|),dy.$$
One can split this into three integrals over intervals where $-|y|-|x-y|$
is linear on each.
$endgroup$
add a comment |
$begingroup$
You can avoid doing the integral if you know the Fourier transform of $1/(1+w^2)$
(which is $pi e^{-|x|}$) and recall that the Fourier transform converts multiplication
into convolution.
Therefore, for $g(x)=e^{-|x|}$,
$$int_{-infty}^inftyfrac{e^{-iwx},dw}{(1+w^2)^2}
=g*g(x)=int_{-infty}^infty g(y)g(x-y),dy
=pi^2int_{-infty}^inftyexp(-|y|-|x-y|),dy.$$
One can split this into three integrals over intervals where $-|y|-|x-y|$
is linear on each.
$endgroup$
add a comment |
$begingroup$
You can avoid doing the integral if you know the Fourier transform of $1/(1+w^2)$
(which is $pi e^{-|x|}$) and recall that the Fourier transform converts multiplication
into convolution.
Therefore, for $g(x)=e^{-|x|}$,
$$int_{-infty}^inftyfrac{e^{-iwx},dw}{(1+w^2)^2}
=g*g(x)=int_{-infty}^infty g(y)g(x-y),dy
=pi^2int_{-infty}^inftyexp(-|y|-|x-y|),dy.$$
One can split this into three integrals over intervals where $-|y|-|x-y|$
is linear on each.
$endgroup$
You can avoid doing the integral if you know the Fourier transform of $1/(1+w^2)$
(which is $pi e^{-|x|}$) and recall that the Fourier transform converts multiplication
into convolution.
Therefore, for $g(x)=e^{-|x|}$,
$$int_{-infty}^inftyfrac{e^{-iwx},dw}{(1+w^2)^2}
=g*g(x)=int_{-infty}^infty g(y)g(x-y),dy
=pi^2int_{-infty}^inftyexp(-|y|-|x-y|),dy.$$
One can split this into three integrals over intervals where $-|y|-|x-y|$
is linear on each.
answered Dec 19 '18 at 6:46
Lord Shark the UnknownLord Shark the Unknown
107k1162135
107k1162135
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046079%2finverse-fourier-transformation-of-frac11w22%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown