Specific numerical eigenfunctions of Helmholtz equation in 3D for ellipsoids












6












$begingroup$


I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?



Here is my code for the first 4 eigenmodes:



Needs["NDSolve`FEM`"];

helmholzSolve3D[g_, numEigenToCompute_Integer,
opts : OptionsPattern] :=
Module[{u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
numEigen, res, eigenValues, eigenVectors,
evIF},

(*Discretize the region*)

If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
boundaryMesh = ToBoundaryMesh[mesh];

(*Set up the PDE and boundary condition*)

pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], {x, y, z}] +
u[t, x, y, z] == 0;
dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
(*Pre-process the equations to obtain the FiniteElementData in
StateData*)nr = ToNumericalRegion[mesh];
{state} =
NDSolve`ProcessEquations[{pde, dirichletCondition,
u[0, x, y, z] == 0}, u, {t, 0, 1}, Element[{x, y, z}, nr]];
femdata = state["FiniteElementData"];
initBCs = femdata["BoundaryConditionData"];
methodData = femdata["FEMMethodData"];
initCoeffs = femdata["PDECoefficientData"];

(*Set up the solution*)vd = methodData["VariableData"];

sd = NDSolve`SolutionData[{"Space" -> nr, "Time" -> 0.}];

(*Discretize the PDE and boundary conditions*)

discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];

(*Extract the relevant matrices and deploy the boundary conditions*)

load = discretePDE["LoadVector"];
stiffness = discretePDE["StiffnessMatrix"];
damping = discretePDE["DampingMatrix"];
DeployBoundaryConditions[{load, stiffness, damping}, discreteBCs];

(*Set the number of eigenvalues ignoring the Dirichlet positions*)

pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
nDiri = Length[pos];
numEigen = numEigenToCompute + nDiri;

(*Solve the eigensystem*)

res = Eigensystem[{stiffness, damping}, -numEigen];
res = Reverse /@ res;
eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
evIF = ElementMeshInterpolation[{mesh}, #] & /@ eigenVectors;

(*Return the relevant information*)

{eigenValues, evIF, mesh}]

{ev, if, mesh} =
helmholzSolve3D[Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}], 4,
MaxCellMeasure -> 0.025]

Table[
DensityPlot[
if[[i]][x, y, 0.1], {x, -1, 1}, {y, -1, 1},
RegionFunction -> Function[{x, y}, x^2/0.75^2 + y^2/0.6^2 < 1],
PlotLabel -> ev[i] ,
ColorFunction -> Hue,
PlotLegends -> Automatic
],
{i, 1, 4}
]


Any suggestions?










share|improve this question











$endgroup$

















    6












    $begingroup$


    I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?



    Here is my code for the first 4 eigenmodes:



    Needs["NDSolve`FEM`"];

    helmholzSolve3D[g_, numEigenToCompute_Integer,
    opts : OptionsPattern] :=
    Module[{u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
    nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
    discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
    numEigen, res, eigenValues, eigenVectors,
    evIF},

    (*Discretize the region*)

    If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
    mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
    mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
    boundaryMesh = ToBoundaryMesh[mesh];

    (*Set up the PDE and boundary condition*)

    pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], {x, y, z}] +
    u[t, x, y, z] == 0;
    dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
    (*Pre-process the equations to obtain the FiniteElementData in
    StateData*)nr = ToNumericalRegion[mesh];
    {state} =
    NDSolve`ProcessEquations[{pde, dirichletCondition,
    u[0, x, y, z] == 0}, u, {t, 0, 1}, Element[{x, y, z}, nr]];
    femdata = state["FiniteElementData"];
    initBCs = femdata["BoundaryConditionData"];
    methodData = femdata["FEMMethodData"];
    initCoeffs = femdata["PDECoefficientData"];

    (*Set up the solution*)vd = methodData["VariableData"];

    sd = NDSolve`SolutionData[{"Space" -> nr, "Time" -> 0.}];

    (*Discretize the PDE and boundary conditions*)

    discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
    discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];

    (*Extract the relevant matrices and deploy the boundary conditions*)

    load = discretePDE["LoadVector"];
    stiffness = discretePDE["StiffnessMatrix"];
    damping = discretePDE["DampingMatrix"];
    DeployBoundaryConditions[{load, stiffness, damping}, discreteBCs];

    (*Set the number of eigenvalues ignoring the Dirichlet positions*)

    pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
    nDiri = Length[pos];
    numEigen = numEigenToCompute + nDiri;

    (*Solve the eigensystem*)

    res = Eigensystem[{stiffness, damping}, -numEigen];
    res = Reverse /@ res;
    eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
    eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
    evIF = ElementMeshInterpolation[{mesh}, #] & /@ eigenVectors;

    (*Return the relevant information*)

    {eigenValues, evIF, mesh}]

    {ev, if, mesh} =
    helmholzSolve3D[Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}], 4,
    MaxCellMeasure -> 0.025]

    Table[
    DensityPlot[
    if[[i]][x, y, 0.1], {x, -1, 1}, {y, -1, 1},
    RegionFunction -> Function[{x, y}, x^2/0.75^2 + y^2/0.6^2 < 1],
    PlotLabel -> ev[i] ,
    ColorFunction -> Hue,
    PlotLegends -> Automatic
    ],
    {i, 1, 4}
    ]


    Any suggestions?










    share|improve this question











    $endgroup$















      6












      6








      6





      $begingroup$


      I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?



      Here is my code for the first 4 eigenmodes:



      Needs["NDSolve`FEM`"];

      helmholzSolve3D[g_, numEigenToCompute_Integer,
      opts : OptionsPattern] :=
      Module[{u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
      nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
      discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
      numEigen, res, eigenValues, eigenVectors,
      evIF},

      (*Discretize the region*)

      If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
      mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
      mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
      boundaryMesh = ToBoundaryMesh[mesh];

      (*Set up the PDE and boundary condition*)

      pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], {x, y, z}] +
      u[t, x, y, z] == 0;
      dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
      (*Pre-process the equations to obtain the FiniteElementData in
      StateData*)nr = ToNumericalRegion[mesh];
      {state} =
      NDSolve`ProcessEquations[{pde, dirichletCondition,
      u[0, x, y, z] == 0}, u, {t, 0, 1}, Element[{x, y, z}, nr]];
      femdata = state["FiniteElementData"];
      initBCs = femdata["BoundaryConditionData"];
      methodData = femdata["FEMMethodData"];
      initCoeffs = femdata["PDECoefficientData"];

      (*Set up the solution*)vd = methodData["VariableData"];

      sd = NDSolve`SolutionData[{"Space" -> nr, "Time" -> 0.}];

      (*Discretize the PDE and boundary conditions*)

      discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
      discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];

      (*Extract the relevant matrices and deploy the boundary conditions*)

      load = discretePDE["LoadVector"];
      stiffness = discretePDE["StiffnessMatrix"];
      damping = discretePDE["DampingMatrix"];
      DeployBoundaryConditions[{load, stiffness, damping}, discreteBCs];

      (*Set the number of eigenvalues ignoring the Dirichlet positions*)

      pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
      nDiri = Length[pos];
      numEigen = numEigenToCompute + nDiri;

      (*Solve the eigensystem*)

      res = Eigensystem[{stiffness, damping}, -numEigen];
      res = Reverse /@ res;
      eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
      eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
      evIF = ElementMeshInterpolation[{mesh}, #] & /@ eigenVectors;

      (*Return the relevant information*)

      {eigenValues, evIF, mesh}]

      {ev, if, mesh} =
      helmholzSolve3D[Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}], 4,
      MaxCellMeasure -> 0.025]

      Table[
      DensityPlot[
      if[[i]][x, y, 0.1], {x, -1, 1}, {y, -1, 1},
      RegionFunction -> Function[{x, y}, x^2/0.75^2 + y^2/0.6^2 < 1],
      PlotLabel -> ev[i] ,
      ColorFunction -> Hue,
      PlotLegends -> Automatic
      ],
      {i, 1, 4}
      ]


      Any suggestions?










      share|improve this question











      $endgroup$




      I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?



      Here is my code for the first 4 eigenmodes:



      Needs["NDSolve`FEM`"];

      helmholzSolve3D[g_, numEigenToCompute_Integer,
      opts : OptionsPattern] :=
      Module[{u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
      nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
      discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
      numEigen, res, eigenValues, eigenVectors,
      evIF},

      (*Discretize the region*)

      If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
      mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
      mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
      boundaryMesh = ToBoundaryMesh[mesh];

      (*Set up the PDE and boundary condition*)

      pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], {x, y, z}] +
      u[t, x, y, z] == 0;
      dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
      (*Pre-process the equations to obtain the FiniteElementData in
      StateData*)nr = ToNumericalRegion[mesh];
      {state} =
      NDSolve`ProcessEquations[{pde, dirichletCondition,
      u[0, x, y, z] == 0}, u, {t, 0, 1}, Element[{x, y, z}, nr]];
      femdata = state["FiniteElementData"];
      initBCs = femdata["BoundaryConditionData"];
      methodData = femdata["FEMMethodData"];
      initCoeffs = femdata["PDECoefficientData"];

      (*Set up the solution*)vd = methodData["VariableData"];

      sd = NDSolve`SolutionData[{"Space" -> nr, "Time" -> 0.}];

      (*Discretize the PDE and boundary conditions*)

      discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
      discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];

      (*Extract the relevant matrices and deploy the boundary conditions*)

      load = discretePDE["LoadVector"];
      stiffness = discretePDE["StiffnessMatrix"];
      damping = discretePDE["DampingMatrix"];
      DeployBoundaryConditions[{load, stiffness, damping}, discreteBCs];

      (*Set the number of eigenvalues ignoring the Dirichlet positions*)

      pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
      nDiri = Length[pos];
      numEigen = numEigenToCompute + nDiri;

      (*Solve the eigensystem*)

      res = Eigensystem[{stiffness, damping}, -numEigen];
      res = Reverse /@ res;
      eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
      eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
      evIF = ElementMeshInterpolation[{mesh}, #] & /@ eigenVectors;

      (*Return the relevant information*)

      {eigenValues, evIF, mesh}]

      {ev, if, mesh} =
      helmholzSolve3D[Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}], 4,
      MaxCellMeasure -> 0.025]

      Table[
      DensityPlot[
      if[[i]][x, y, 0.1], {x, -1, 1}, {y, -1, 1},
      RegionFunction -> Function[{x, y}, x^2/0.75^2 + y^2/0.6^2 < 1],
      PlotLabel -> ev[i] ,
      ColorFunction -> Hue,
      PlotLegends -> Automatic
      ],
      {i, 1, 4}
      ]


      Any suggestions?







      differential-equations numerics finite-element-method






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 29 at 11:18









      user64494

      3,57411022




      3,57411022










      asked Mar 26 at 22:24









      George GiannoulisGeorge Giannoulis

      624




      624






















          2 Answers
          2






          active

          oldest

          votes


















          9












          $begingroup$

          You could use something like this:



          {vals, funs} = 
          NDEigensystem[{-Laplacian[u[x, y, z], {x, y, z}] + u[x, y, z],
          DirichletCondition[u[x, y, z] == 0, True]}, u,
          Element[{x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]], 4,
          Method -> {"Eigensystem" -> {"FEAST", "Interval" -> {425, 500}}}]

          {{427.961, 428.783, 430.026, 430.156},...}


          And here are the density plots:



          Table[DensityPlot[funs[[i]][x, y, 0.1], {x, -1, 1}, {y, -1, 1}, 
          RegionFunction -> Function[{x, y}, x^2/0.75^2 + y^2/0.6^2 < 1],
          PlotLabel -> vals[[i]], ColorFunction -> Hue,
          PlotLegends -> Automatic, PlotRange -> All], {i, 1, 4}]


          enter image description here



          Slice density plots:



          Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
          Element[ {x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]],
          PlotRange -> All, PlotLabel -> vals[[i]],
          PlotTheme -> "Minimal"], {i, Length[vals]}]


          enter image description here



          And density plots:



          Table[DensityPlot3D[funs[[i]][x, y, z], 
          Element[ {x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]],
          PlotRange -> All, PlotLabel -> vals[[i]],
          PlotTheme -> "Minimal"], {i, Length[vals]}]


          enter image description here






          share|improve this answer











          $endgroup$













          • $begingroup$
            Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
            $endgroup$
            – George Giannoulis
            Mar 28 at 19:26










          • $begingroup$
            @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
            $endgroup$
            – user21
            Mar 29 at 5:36










          • $begingroup$
            OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
            $endgroup$
            – George Giannoulis
            Mar 29 at 10:16










          • $begingroup$
            @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
            $endgroup$
            – user21
            Mar 29 at 10:23










          • $begingroup$
            Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
            $endgroup$
            – George Giannoulis
            Mar 29 at 10:58



















          6












          $begingroup$

          You may try Eigensystem with



          Method -> {"FEAST", "Interval" -> {a, b}}


          to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.






          share|improve this answer











          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "387"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194006%2fspecific-numerical-eigenfunctions-of-helmholtz-equation-in-3d-for-ellipsoids%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            9












            $begingroup$

            You could use something like this:



            {vals, funs} = 
            NDEigensystem[{-Laplacian[u[x, y, z], {x, y, z}] + u[x, y, z],
            DirichletCondition[u[x, y, z] == 0, True]}, u,
            Element[{x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]], 4,
            Method -> {"Eigensystem" -> {"FEAST", "Interval" -> {425, 500}}}]

            {{427.961, 428.783, 430.026, 430.156},...}


            And here are the density plots:



            Table[DensityPlot[funs[[i]][x, y, 0.1], {x, -1, 1}, {y, -1, 1}, 
            RegionFunction -> Function[{x, y}, x^2/0.75^2 + y^2/0.6^2 < 1],
            PlotLabel -> vals[[i]], ColorFunction -> Hue,
            PlotLegends -> Automatic, PlotRange -> All], {i, 1, 4}]


            enter image description here



            Slice density plots:



            Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
            Element[ {x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], {i, Length[vals]}]


            enter image description here



            And density plots:



            Table[DensityPlot3D[funs[[i]][x, y, z], 
            Element[ {x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], {i, Length[vals]}]


            enter image description here






            share|improve this answer











            $endgroup$













            • $begingroup$
              Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
              $endgroup$
              – George Giannoulis
              Mar 28 at 19:26










            • $begingroup$
              @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
              $endgroup$
              – user21
              Mar 29 at 5:36










            • $begingroup$
              OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:16










            • $begingroup$
              @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
              $endgroup$
              – user21
              Mar 29 at 10:23










            • $begingroup$
              Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:58
















            9












            $begingroup$

            You could use something like this:



            {vals, funs} = 
            NDEigensystem[{-Laplacian[u[x, y, z], {x, y, z}] + u[x, y, z],
            DirichletCondition[u[x, y, z] == 0, True]}, u,
            Element[{x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]], 4,
            Method -> {"Eigensystem" -> {"FEAST", "Interval" -> {425, 500}}}]

            {{427.961, 428.783, 430.026, 430.156},...}


            And here are the density plots:



            Table[DensityPlot[funs[[i]][x, y, 0.1], {x, -1, 1}, {y, -1, 1}, 
            RegionFunction -> Function[{x, y}, x^2/0.75^2 + y^2/0.6^2 < 1],
            PlotLabel -> vals[[i]], ColorFunction -> Hue,
            PlotLegends -> Automatic, PlotRange -> All], {i, 1, 4}]


            enter image description here



            Slice density plots:



            Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
            Element[ {x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], {i, Length[vals]}]


            enter image description here



            And density plots:



            Table[DensityPlot3D[funs[[i]][x, y, z], 
            Element[ {x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], {i, Length[vals]}]


            enter image description here






            share|improve this answer











            $endgroup$













            • $begingroup$
              Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
              $endgroup$
              – George Giannoulis
              Mar 28 at 19:26










            • $begingroup$
              @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
              $endgroup$
              – user21
              Mar 29 at 5:36










            • $begingroup$
              OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:16










            • $begingroup$
              @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
              $endgroup$
              – user21
              Mar 29 at 10:23










            • $begingroup$
              Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:58














            9












            9








            9





            $begingroup$

            You could use something like this:



            {vals, funs} = 
            NDEigensystem[{-Laplacian[u[x, y, z], {x, y, z}] + u[x, y, z],
            DirichletCondition[u[x, y, z] == 0, True]}, u,
            Element[{x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]], 4,
            Method -> {"Eigensystem" -> {"FEAST", "Interval" -> {425, 500}}}]

            {{427.961, 428.783, 430.026, 430.156},...}


            And here are the density plots:



            Table[DensityPlot[funs[[i]][x, y, 0.1], {x, -1, 1}, {y, -1, 1}, 
            RegionFunction -> Function[{x, y}, x^2/0.75^2 + y^2/0.6^2 < 1],
            PlotLabel -> vals[[i]], ColorFunction -> Hue,
            PlotLegends -> Automatic, PlotRange -> All], {i, 1, 4}]


            enter image description here



            Slice density plots:



            Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
            Element[ {x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], {i, Length[vals]}]


            enter image description here



            And density plots:



            Table[DensityPlot3D[funs[[i]][x, y, z], 
            Element[ {x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], {i, Length[vals]}]


            enter image description here






            share|improve this answer











            $endgroup$



            You could use something like this:



            {vals, funs} = 
            NDEigensystem[{-Laplacian[u[x, y, z], {x, y, z}] + u[x, y, z],
            DirichletCondition[u[x, y, z] == 0, True]}, u,
            Element[{x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]], 4,
            Method -> {"Eigensystem" -> {"FEAST", "Interval" -> {425, 500}}}]

            {{427.961, 428.783, 430.026, 430.156},...}


            And here are the density plots:



            Table[DensityPlot[funs[[i]][x, y, 0.1], {x, -1, 1}, {y, -1, 1}, 
            RegionFunction -> Function[{x, y}, x^2/0.75^2 + y^2/0.6^2 < 1],
            PlotLabel -> vals[[i]], ColorFunction -> Hue,
            PlotLegends -> Automatic, PlotRange -> All], {i, 1, 4}]


            enter image description here



            Slice density plots:



            Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
            Element[ {x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], {i, Length[vals]}]


            enter image description here



            And density plots:



            Table[DensityPlot3D[funs[[i]][x, y, z], 
            Element[ {x, y, z}, Ellipsoid[{0, 0, 0}, {0.75, 0.6, 0.6}]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], {i, Length[vals]}]


            enter image description here







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Mar 29 at 12:55

























            answered Mar 27 at 6:31









            user21user21

            19.9k45385




            19.9k45385












            • $begingroup$
              Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
              $endgroup$
              – George Giannoulis
              Mar 28 at 19:26










            • $begingroup$
              @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
              $endgroup$
              – user21
              Mar 29 at 5:36










            • $begingroup$
              OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:16










            • $begingroup$
              @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
              $endgroup$
              – user21
              Mar 29 at 10:23










            • $begingroup$
              Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:58


















            • $begingroup$
              Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
              $endgroup$
              – George Giannoulis
              Mar 28 at 19:26










            • $begingroup$
              @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
              $endgroup$
              – user21
              Mar 29 at 5:36










            • $begingroup$
              OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:16










            • $begingroup$
              @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
              $endgroup$
              – user21
              Mar 29 at 10:23










            • $begingroup$
              Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
              $endgroup$
              – George Giannoulis
              Mar 29 at 10:58
















            $begingroup$
            Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
            $endgroup$
            – George Giannoulis
            Mar 28 at 19:26




            $begingroup$
            Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
            $endgroup$
            – George Giannoulis
            Mar 28 at 19:26












            $begingroup$
            @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
            $endgroup$
            – user21
            Mar 29 at 5:36




            $begingroup$
            @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
            $endgroup$
            – user21
            Mar 29 at 5:36












            $begingroup$
            OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
            $endgroup$
            – George Giannoulis
            Mar 29 at 10:16




            $begingroup$
            OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
            $endgroup$
            – George Giannoulis
            Mar 29 at 10:16












            $begingroup$
            @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
            $endgroup$
            – user21
            Mar 29 at 10:23




            $begingroup$
            @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
            $endgroup$
            – user21
            Mar 29 at 10:23












            $begingroup$
            Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
            $endgroup$
            – George Giannoulis
            Mar 29 at 10:58




            $begingroup$
            Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
            $endgroup$
            – George Giannoulis
            Mar 29 at 10:58











            6












            $begingroup$

            You may try Eigensystem with



            Method -> {"FEAST", "Interval" -> {a, b}}


            to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.






            share|improve this answer











            $endgroup$


















              6












              $begingroup$

              You may try Eigensystem with



              Method -> {"FEAST", "Interval" -> {a, b}}


              to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.






              share|improve this answer











              $endgroup$
















                6












                6








                6





                $begingroup$

                You may try Eigensystem with



                Method -> {"FEAST", "Interval" -> {a, b}}


                to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.






                share|improve this answer











                $endgroup$



                You may try Eigensystem with



                Method -> {"FEAST", "Interval" -> {a, b}}


                to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Mar 27 at 7:23

























                answered Mar 26 at 22:32









                Henrik SchumacherHenrik Schumacher

                58.7k581162




                58.7k581162






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematica Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194006%2fspecific-numerical-eigenfunctions-of-helmholtz-equation-in-3d-for-ellipsoids%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Plaza Victoria

                    Puebla de Zaragoza

                    Musa