Let $a_n = intlimits_{0}^{n} e^{-x^4} dx$. Does ${ a_n }_{n rightarrow infty}$ converge?












1












$begingroup$


Let $a_n = intlimits_{0}^{n} e^{-x^4} dx$. Does ${ a_n }_{n rightarrow infty}$ converge?



${ a_n } ={ intlimits_{0}^{1} e^{-x^4} dx, intlimits_{0}^{2} e^{-x^4} dx, ..., intlimits_{0}^{infty} e^{-x^4} dx }$



So we need need only to check that the definite integral



$intlimits_{0}^{infty} e^{-x^4} dx$ converges



By using Wolfram Alpha,



$intlimits_{0}^{infty} e^{-x^4} dx } = Gamma left( frac54 right) approx 0.906402$



where $Gamma$ is the Gamma function



Therefore ${ a_n }$ converges, to $Gamma left( frac54 right)$.



But what if I can't use Wolfram Alpha? How can I solve for this integration by hand? Sorry if this makes me look stupid, I don't recall learning any techniques from Calculus that can help me solve this integration.



Thanks in advance!










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Exponential are 'always' quite strong.
    $endgroup$
    – Felix Marin
    Oct 31 '13 at 7:47






  • 1




    $begingroup$
    Generally speaking, $$n!=Gleft(frac1nright)qquad where qquad G(n)=int_0^infty e^{-x^n}dxqquadforall ngeqslant0$$
    $endgroup$
    – Lucian
    Oct 31 '13 at 7:47
















1












$begingroup$


Let $a_n = intlimits_{0}^{n} e^{-x^4} dx$. Does ${ a_n }_{n rightarrow infty}$ converge?



${ a_n } ={ intlimits_{0}^{1} e^{-x^4} dx, intlimits_{0}^{2} e^{-x^4} dx, ..., intlimits_{0}^{infty} e^{-x^4} dx }$



So we need need only to check that the definite integral



$intlimits_{0}^{infty} e^{-x^4} dx$ converges



By using Wolfram Alpha,



$intlimits_{0}^{infty} e^{-x^4} dx } = Gamma left( frac54 right) approx 0.906402$



where $Gamma$ is the Gamma function



Therefore ${ a_n }$ converges, to $Gamma left( frac54 right)$.



But what if I can't use Wolfram Alpha? How can I solve for this integration by hand? Sorry if this makes me look stupid, I don't recall learning any techniques from Calculus that can help me solve this integration.



Thanks in advance!










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Exponential are 'always' quite strong.
    $endgroup$
    – Felix Marin
    Oct 31 '13 at 7:47






  • 1




    $begingroup$
    Generally speaking, $$n!=Gleft(frac1nright)qquad where qquad G(n)=int_0^infty e^{-x^n}dxqquadforall ngeqslant0$$
    $endgroup$
    – Lucian
    Oct 31 '13 at 7:47














1












1








1


1



$begingroup$


Let $a_n = intlimits_{0}^{n} e^{-x^4} dx$. Does ${ a_n }_{n rightarrow infty}$ converge?



${ a_n } ={ intlimits_{0}^{1} e^{-x^4} dx, intlimits_{0}^{2} e^{-x^4} dx, ..., intlimits_{0}^{infty} e^{-x^4} dx }$



So we need need only to check that the definite integral



$intlimits_{0}^{infty} e^{-x^4} dx$ converges



By using Wolfram Alpha,



$intlimits_{0}^{infty} e^{-x^4} dx } = Gamma left( frac54 right) approx 0.906402$



where $Gamma$ is the Gamma function



Therefore ${ a_n }$ converges, to $Gamma left( frac54 right)$.



But what if I can't use Wolfram Alpha? How can I solve for this integration by hand? Sorry if this makes me look stupid, I don't recall learning any techniques from Calculus that can help me solve this integration.



Thanks in advance!










share|cite|improve this question









$endgroup$




Let $a_n = intlimits_{0}^{n} e^{-x^4} dx$. Does ${ a_n }_{n rightarrow infty}$ converge?



${ a_n } ={ intlimits_{0}^{1} e^{-x^4} dx, intlimits_{0}^{2} e^{-x^4} dx, ..., intlimits_{0}^{infty} e^{-x^4} dx }$



So we need need only to check that the definite integral



$intlimits_{0}^{infty} e^{-x^4} dx$ converges



By using Wolfram Alpha,



$intlimits_{0}^{infty} e^{-x^4} dx } = Gamma left( frac54 right) approx 0.906402$



where $Gamma$ is the Gamma function



Therefore ${ a_n }$ converges, to $Gamma left( frac54 right)$.



But what if I can't use Wolfram Alpha? How can I solve for this integration by hand? Sorry if this makes me look stupid, I don't recall learning any techniques from Calculus that can help me solve this integration.



Thanks in advance!







calculus integration sequences-and-series gamma-function






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Oct 31 '13 at 7:33









PandaManPandaMan

1,19911333




1,19911333








  • 1




    $begingroup$
    Exponential are 'always' quite strong.
    $endgroup$
    – Felix Marin
    Oct 31 '13 at 7:47






  • 1




    $begingroup$
    Generally speaking, $$n!=Gleft(frac1nright)qquad where qquad G(n)=int_0^infty e^{-x^n}dxqquadforall ngeqslant0$$
    $endgroup$
    – Lucian
    Oct 31 '13 at 7:47














  • 1




    $begingroup$
    Exponential are 'always' quite strong.
    $endgroup$
    – Felix Marin
    Oct 31 '13 at 7:47






  • 1




    $begingroup$
    Generally speaking, $$n!=Gleft(frac1nright)qquad where qquad G(n)=int_0^infty e^{-x^n}dxqquadforall ngeqslant0$$
    $endgroup$
    – Lucian
    Oct 31 '13 at 7:47








1




1




$begingroup$
Exponential are 'always' quite strong.
$endgroup$
– Felix Marin
Oct 31 '13 at 7:47




$begingroup$
Exponential are 'always' quite strong.
$endgroup$
– Felix Marin
Oct 31 '13 at 7:47




1




1




$begingroup$
Generally speaking, $$n!=Gleft(frac1nright)qquad where qquad G(n)=int_0^infty e^{-x^n}dxqquadforall ngeqslant0$$
$endgroup$
– Lucian
Oct 31 '13 at 7:47




$begingroup$
Generally speaking, $$n!=Gleft(frac1nright)qquad where qquad G(n)=int_0^infty e^{-x^n}dxqquadforall ngeqslant0$$
$endgroup$
– Lucian
Oct 31 '13 at 7:47










2 Answers
2






active

oldest

votes


















7












$begingroup$

We do not need an explicit expression to show that an improper integral converges.



The sequence $(a_n)$ is obviously increasing. It is bounded above by $int_0^1 e^{-x^4},dx+int_1^infty e^{-x},dx$. To be explicit, the first integral is less than $1$, and the second is $e^{-1}$, so the sequence $(a_n)$ is bounded above by $1+e^{-1}$.



Any increasing sequence which is bounded above converges.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    You are welcome.
    $endgroup$
    – André Nicolas
    Nov 19 '13 at 3:07



















0












$begingroup$

Recall the Taylor series for $e^x$ at $x = 0$ is given by:



begin{equation}
e^{x} = sum_{n = 0}^{infty} frac{x^n}{n!}
end{equation}



Thus,



begin{equation}
e^{-x^4} = sum_{n = 0}^{infty} frac{(-1)^n x^{4n}}{n!}
end{equation}



Thus,



begin{align}
int_{0}^{t} e^{-x^4} :dx &= sum_{n = 0}^{infty} frac{(-1)^n }{n!}int_{0}^{t}x^{4n}:dx = sum_{n = 0}^{infty} frac{(-1)^n }{n!} left[frac{x^{4n + 1}}{4n + 1} right]_{0}^{t} \
&= sum_{n = 0}^{infty} frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1} = sum_{n = 0}^{infty} b_n(t)
end{align}



We now apply the Ratio Test:



begin{align}
R &= lim_{n rightarrow infty} left|frac{b_{n + 1}}{b_{n}}right| = lim_{n rightarrow infty} left|frac{frac{(-1)^{n+1} }{left(n + 1right)!} frac{t^{4left(n + 1right) + 1}}{4left(n + 1right) + 1}}{frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1}}right| \
&= lim_{n rightarrow infty} left| frac{1}{n + 1} cdot frac{4n + 1}{4n + 5}cdot t^4right|
end{align}



Which for any finite $t$ becomes $R = 0$ and thus, by the Ratio test the series (and by extension) integral converge for all finite real $t$.






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f546649%2flet-a-n-int-limits-0n-e-x4-dx-does-a-n-n-rightarrow-inf%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    7












    $begingroup$

    We do not need an explicit expression to show that an improper integral converges.



    The sequence $(a_n)$ is obviously increasing. It is bounded above by $int_0^1 e^{-x^4},dx+int_1^infty e^{-x},dx$. To be explicit, the first integral is less than $1$, and the second is $e^{-1}$, so the sequence $(a_n)$ is bounded above by $1+e^{-1}$.



    Any increasing sequence which is bounded above converges.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      You are welcome.
      $endgroup$
      – André Nicolas
      Nov 19 '13 at 3:07
















    7












    $begingroup$

    We do not need an explicit expression to show that an improper integral converges.



    The sequence $(a_n)$ is obviously increasing. It is bounded above by $int_0^1 e^{-x^4},dx+int_1^infty e^{-x},dx$. To be explicit, the first integral is less than $1$, and the second is $e^{-1}$, so the sequence $(a_n)$ is bounded above by $1+e^{-1}$.



    Any increasing sequence which is bounded above converges.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      You are welcome.
      $endgroup$
      – André Nicolas
      Nov 19 '13 at 3:07














    7












    7








    7





    $begingroup$

    We do not need an explicit expression to show that an improper integral converges.



    The sequence $(a_n)$ is obviously increasing. It is bounded above by $int_0^1 e^{-x^4},dx+int_1^infty e^{-x},dx$. To be explicit, the first integral is less than $1$, and the second is $e^{-1}$, so the sequence $(a_n)$ is bounded above by $1+e^{-1}$.



    Any increasing sequence which is bounded above converges.






    share|cite|improve this answer











    $endgroup$



    We do not need an explicit expression to show that an improper integral converges.



    The sequence $(a_n)$ is obviously increasing. It is bounded above by $int_0^1 e^{-x^4},dx+int_1^infty e^{-x},dx$. To be explicit, the first integral is less than $1$, and the second is $e^{-1}$, so the sequence $(a_n)$ is bounded above by $1+e^{-1}$.



    Any increasing sequence which is bounded above converges.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Oct 31 '13 at 7:58

























    answered Oct 31 '13 at 7:40









    André NicolasAndré Nicolas

    455k36432819




    455k36432819












    • $begingroup$
      You are welcome.
      $endgroup$
      – André Nicolas
      Nov 19 '13 at 3:07


















    • $begingroup$
      You are welcome.
      $endgroup$
      – André Nicolas
      Nov 19 '13 at 3:07
















    $begingroup$
    You are welcome.
    $endgroup$
    – André Nicolas
    Nov 19 '13 at 3:07




    $begingroup$
    You are welcome.
    $endgroup$
    – André Nicolas
    Nov 19 '13 at 3:07











    0












    $begingroup$

    Recall the Taylor series for $e^x$ at $x = 0$ is given by:



    begin{equation}
    e^{x} = sum_{n = 0}^{infty} frac{x^n}{n!}
    end{equation}



    Thus,



    begin{equation}
    e^{-x^4} = sum_{n = 0}^{infty} frac{(-1)^n x^{4n}}{n!}
    end{equation}



    Thus,



    begin{align}
    int_{0}^{t} e^{-x^4} :dx &= sum_{n = 0}^{infty} frac{(-1)^n }{n!}int_{0}^{t}x^{4n}:dx = sum_{n = 0}^{infty} frac{(-1)^n }{n!} left[frac{x^{4n + 1}}{4n + 1} right]_{0}^{t} \
    &= sum_{n = 0}^{infty} frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1} = sum_{n = 0}^{infty} b_n(t)
    end{align}



    We now apply the Ratio Test:



    begin{align}
    R &= lim_{n rightarrow infty} left|frac{b_{n + 1}}{b_{n}}right| = lim_{n rightarrow infty} left|frac{frac{(-1)^{n+1} }{left(n + 1right)!} frac{t^{4left(n + 1right) + 1}}{4left(n + 1right) + 1}}{frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1}}right| \
    &= lim_{n rightarrow infty} left| frac{1}{n + 1} cdot frac{4n + 1}{4n + 5}cdot t^4right|
    end{align}



    Which for any finite $t$ becomes $R = 0$ and thus, by the Ratio test the series (and by extension) integral converge for all finite real $t$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Recall the Taylor series for $e^x$ at $x = 0$ is given by:



      begin{equation}
      e^{x} = sum_{n = 0}^{infty} frac{x^n}{n!}
      end{equation}



      Thus,



      begin{equation}
      e^{-x^4} = sum_{n = 0}^{infty} frac{(-1)^n x^{4n}}{n!}
      end{equation}



      Thus,



      begin{align}
      int_{0}^{t} e^{-x^4} :dx &= sum_{n = 0}^{infty} frac{(-1)^n }{n!}int_{0}^{t}x^{4n}:dx = sum_{n = 0}^{infty} frac{(-1)^n }{n!} left[frac{x^{4n + 1}}{4n + 1} right]_{0}^{t} \
      &= sum_{n = 0}^{infty} frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1} = sum_{n = 0}^{infty} b_n(t)
      end{align}



      We now apply the Ratio Test:



      begin{align}
      R &= lim_{n rightarrow infty} left|frac{b_{n + 1}}{b_{n}}right| = lim_{n rightarrow infty} left|frac{frac{(-1)^{n+1} }{left(n + 1right)!} frac{t^{4left(n + 1right) + 1}}{4left(n + 1right) + 1}}{frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1}}right| \
      &= lim_{n rightarrow infty} left| frac{1}{n + 1} cdot frac{4n + 1}{4n + 5}cdot t^4right|
      end{align}



      Which for any finite $t$ becomes $R = 0$ and thus, by the Ratio test the series (and by extension) integral converge for all finite real $t$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Recall the Taylor series for $e^x$ at $x = 0$ is given by:



        begin{equation}
        e^{x} = sum_{n = 0}^{infty} frac{x^n}{n!}
        end{equation}



        Thus,



        begin{equation}
        e^{-x^4} = sum_{n = 0}^{infty} frac{(-1)^n x^{4n}}{n!}
        end{equation}



        Thus,



        begin{align}
        int_{0}^{t} e^{-x^4} :dx &= sum_{n = 0}^{infty} frac{(-1)^n }{n!}int_{0}^{t}x^{4n}:dx = sum_{n = 0}^{infty} frac{(-1)^n }{n!} left[frac{x^{4n + 1}}{4n + 1} right]_{0}^{t} \
        &= sum_{n = 0}^{infty} frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1} = sum_{n = 0}^{infty} b_n(t)
        end{align}



        We now apply the Ratio Test:



        begin{align}
        R &= lim_{n rightarrow infty} left|frac{b_{n + 1}}{b_{n}}right| = lim_{n rightarrow infty} left|frac{frac{(-1)^{n+1} }{left(n + 1right)!} frac{t^{4left(n + 1right) + 1}}{4left(n + 1right) + 1}}{frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1}}right| \
        &= lim_{n rightarrow infty} left| frac{1}{n + 1} cdot frac{4n + 1}{4n + 5}cdot t^4right|
        end{align}



        Which for any finite $t$ becomes $R = 0$ and thus, by the Ratio test the series (and by extension) integral converge for all finite real $t$.






        share|cite|improve this answer









        $endgroup$



        Recall the Taylor series for $e^x$ at $x = 0$ is given by:



        begin{equation}
        e^{x} = sum_{n = 0}^{infty} frac{x^n}{n!}
        end{equation}



        Thus,



        begin{equation}
        e^{-x^4} = sum_{n = 0}^{infty} frac{(-1)^n x^{4n}}{n!}
        end{equation}



        Thus,



        begin{align}
        int_{0}^{t} e^{-x^4} :dx &= sum_{n = 0}^{infty} frac{(-1)^n }{n!}int_{0}^{t}x^{4n}:dx = sum_{n = 0}^{infty} frac{(-1)^n }{n!} left[frac{x^{4n + 1}}{4n + 1} right]_{0}^{t} \
        &= sum_{n = 0}^{infty} frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1} = sum_{n = 0}^{infty} b_n(t)
        end{align}



        We now apply the Ratio Test:



        begin{align}
        R &= lim_{n rightarrow infty} left|frac{b_{n + 1}}{b_{n}}right| = lim_{n rightarrow infty} left|frac{frac{(-1)^{n+1} }{left(n + 1right)!} frac{t^{4left(n + 1right) + 1}}{4left(n + 1right) + 1}}{frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1}}right| \
        &= lim_{n rightarrow infty} left| frac{1}{n + 1} cdot frac{4n + 1}{4n + 5}cdot t^4right|
        end{align}



        Which for any finite $t$ becomes $R = 0$ and thus, by the Ratio test the series (and by extension) integral converge for all finite real $t$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 19 '18 at 2:28







        user150203





































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f546649%2flet-a-n-int-limits-0n-e-x4-dx-does-a-n-n-rightarrow-inf%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

            How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...