Relation between the split extension and nonsplit extensions.











up vote
1
down vote

favorite
1












Suppose $A$ is an algebra over $mathbb{C}$. Let $M$ and $N$ be $A$-modules with $Ext^{1}(M,N) neq 0 neq Ext^{1}(N,M)$.
By $Ein Ext^1(N,M)$, I mean we have a short exact sequence of the form
$$ 0 rightarrow M rightarrow E rightarrow N rightarrow 0.$$
I am wondering how the following two sets are related:
$$S_1 := { d : M oplus N textrm{ has a submodule of dimension } d } $$
$$S_2 := { d : exists textrm { nonsplit } Ein Ext^1(M,N) textrm { or } Ein Ext^1(N,M) textrm { s.t. } E textrm { has a submodule of dimension } d }.$$
I think $S_2 subseteq S_1$ since if $Ssubseteq E$ is a submodule with $0 rightarrow M rightarrow E rightarrow N rightarrow 0$, then viewing $M$ as a submodule of $E$, consider the exact sequence
$$0 rightarrow Scap M xrightarrow {i} S rightarrow textrm{coker }i rightarrow 0.$$
Then if we define a map $varphi :$ coker $i cong S/(Scap M)rightarrow N cong E/M$ by $[s] mapsto [s]$, this will be injective so the module $(S cap M)oplus textrm{im } varphi$ will be a submodule of $Moplus N$ with the same dimension as $S$.
I also think $S_2 subseteq S_1$ but I haven't been able to think of any way to see this.



Would it make a difference if I also assumed that



1) $M$ and $N$ are indecomposable,



2) $dim Ext^1(M,N) = dim Ext^1 (N,M) = 1$,



3) The nonsplit extensions $0 rightarrow M xrightarrow{f_1} E_1 rightarrow N rightarrow 0$ and $0rightarrow N xrightarrow {f_2} E_2 rightarrow M rightarrow 0$ have the property that $f_1$ and $f_2$ are minimal left approximations?










share|cite|improve this question




























    up vote
    1
    down vote

    favorite
    1












    Suppose $A$ is an algebra over $mathbb{C}$. Let $M$ and $N$ be $A$-modules with $Ext^{1}(M,N) neq 0 neq Ext^{1}(N,M)$.
    By $Ein Ext^1(N,M)$, I mean we have a short exact sequence of the form
    $$ 0 rightarrow M rightarrow E rightarrow N rightarrow 0.$$
    I am wondering how the following two sets are related:
    $$S_1 := { d : M oplus N textrm{ has a submodule of dimension } d } $$
    $$S_2 := { d : exists textrm { nonsplit } Ein Ext^1(M,N) textrm { or } Ein Ext^1(N,M) textrm { s.t. } E textrm { has a submodule of dimension } d }.$$
    I think $S_2 subseteq S_1$ since if $Ssubseteq E$ is a submodule with $0 rightarrow M rightarrow E rightarrow N rightarrow 0$, then viewing $M$ as a submodule of $E$, consider the exact sequence
    $$0 rightarrow Scap M xrightarrow {i} S rightarrow textrm{coker }i rightarrow 0.$$
    Then if we define a map $varphi :$ coker $i cong S/(Scap M)rightarrow N cong E/M$ by $[s] mapsto [s]$, this will be injective so the module $(S cap M)oplus textrm{im } varphi$ will be a submodule of $Moplus N$ with the same dimension as $S$.
    I also think $S_2 subseteq S_1$ but I haven't been able to think of any way to see this.



    Would it make a difference if I also assumed that



    1) $M$ and $N$ are indecomposable,



    2) $dim Ext^1(M,N) = dim Ext^1 (N,M) = 1$,



    3) The nonsplit extensions $0 rightarrow M xrightarrow{f_1} E_1 rightarrow N rightarrow 0$ and $0rightarrow N xrightarrow {f_2} E_2 rightarrow M rightarrow 0$ have the property that $f_1$ and $f_2$ are minimal left approximations?










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1





      Suppose $A$ is an algebra over $mathbb{C}$. Let $M$ and $N$ be $A$-modules with $Ext^{1}(M,N) neq 0 neq Ext^{1}(N,M)$.
      By $Ein Ext^1(N,M)$, I mean we have a short exact sequence of the form
      $$ 0 rightarrow M rightarrow E rightarrow N rightarrow 0.$$
      I am wondering how the following two sets are related:
      $$S_1 := { d : M oplus N textrm{ has a submodule of dimension } d } $$
      $$S_2 := { d : exists textrm { nonsplit } Ein Ext^1(M,N) textrm { or } Ein Ext^1(N,M) textrm { s.t. } E textrm { has a submodule of dimension } d }.$$
      I think $S_2 subseteq S_1$ since if $Ssubseteq E$ is a submodule with $0 rightarrow M rightarrow E rightarrow N rightarrow 0$, then viewing $M$ as a submodule of $E$, consider the exact sequence
      $$0 rightarrow Scap M xrightarrow {i} S rightarrow textrm{coker }i rightarrow 0.$$
      Then if we define a map $varphi :$ coker $i cong S/(Scap M)rightarrow N cong E/M$ by $[s] mapsto [s]$, this will be injective so the module $(S cap M)oplus textrm{im } varphi$ will be a submodule of $Moplus N$ with the same dimension as $S$.
      I also think $S_2 subseteq S_1$ but I haven't been able to think of any way to see this.



      Would it make a difference if I also assumed that



      1) $M$ and $N$ are indecomposable,



      2) $dim Ext^1(M,N) = dim Ext^1 (N,M) = 1$,



      3) The nonsplit extensions $0 rightarrow M xrightarrow{f_1} E_1 rightarrow N rightarrow 0$ and $0rightarrow N xrightarrow {f_2} E_2 rightarrow M rightarrow 0$ have the property that $f_1$ and $f_2$ are minimal left approximations?










      share|cite|improve this question















      Suppose $A$ is an algebra over $mathbb{C}$. Let $M$ and $N$ be $A$-modules with $Ext^{1}(M,N) neq 0 neq Ext^{1}(N,M)$.
      By $Ein Ext^1(N,M)$, I mean we have a short exact sequence of the form
      $$ 0 rightarrow M rightarrow E rightarrow N rightarrow 0.$$
      I am wondering how the following two sets are related:
      $$S_1 := { d : M oplus N textrm{ has a submodule of dimension } d } $$
      $$S_2 := { d : exists textrm { nonsplit } Ein Ext^1(M,N) textrm { or } Ein Ext^1(N,M) textrm { s.t. } E textrm { has a submodule of dimension } d }.$$
      I think $S_2 subseteq S_1$ since if $Ssubseteq E$ is a submodule with $0 rightarrow M rightarrow E rightarrow N rightarrow 0$, then viewing $M$ as a submodule of $E$, consider the exact sequence
      $$0 rightarrow Scap M xrightarrow {i} S rightarrow textrm{coker }i rightarrow 0.$$
      Then if we define a map $varphi :$ coker $i cong S/(Scap M)rightarrow N cong E/M$ by $[s] mapsto [s]$, this will be injective so the module $(S cap M)oplus textrm{im } varphi$ will be a submodule of $Moplus N$ with the same dimension as $S$.
      I also think $S_2 subseteq S_1$ but I haven't been able to think of any way to see this.



      Would it make a difference if I also assumed that



      1) $M$ and $N$ are indecomposable,



      2) $dim Ext^1(M,N) = dim Ext^1 (N,M) = 1$,



      3) The nonsplit extensions $0 rightarrow M xrightarrow{f_1} E_1 rightarrow N rightarrow 0$ and $0rightarrow N xrightarrow {f_2} E_2 rightarrow M rightarrow 0$ have the property that $f_1$ and $f_2$ are minimal left approximations?







      commutative-algebra modules representation-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 15 at 10:40

























      asked Nov 15 at 0:19









      Roger

      63




      63



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999009%2frelation-between-the-split-extension-and-nonsplit-extensions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999009%2frelation-between-the-split-extension-and-nonsplit-extensions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa