Relation between the split extension and nonsplit extensions.
up vote
1
down vote
favorite
Suppose $A$ is an algebra over $mathbb{C}$. Let $M$ and $N$ be $A$-modules with $Ext^{1}(M,N) neq 0 neq Ext^{1}(N,M)$.
By $Ein Ext^1(N,M)$, I mean we have a short exact sequence of the form
$$ 0 rightarrow M rightarrow E rightarrow N rightarrow 0.$$
I am wondering how the following two sets are related:
$$S_1 := { d : M oplus N textrm{ has a submodule of dimension } d } $$
$$S_2 := { d : exists textrm { nonsplit } Ein Ext^1(M,N) textrm { or } Ein Ext^1(N,M) textrm { s.t. } E textrm { has a submodule of dimension } d }.$$
I think $S_2 subseteq S_1$ since if $Ssubseteq E$ is a submodule with $0 rightarrow M rightarrow E rightarrow N rightarrow 0$, then viewing $M$ as a submodule of $E$, consider the exact sequence
$$0 rightarrow Scap M xrightarrow {i} S rightarrow textrm{coker }i rightarrow 0.$$
Then if we define a map $varphi :$ coker $i cong S/(Scap M)rightarrow N cong E/M$ by $[s] mapsto [s]$, this will be injective so the module $(S cap M)oplus textrm{im } varphi$ will be a submodule of $Moplus N$ with the same dimension as $S$.
I also think $S_2 subseteq S_1$ but I haven't been able to think of any way to see this.
Would it make a difference if I also assumed that
1) $M$ and $N$ are indecomposable,
2) $dim Ext^1(M,N) = dim Ext^1 (N,M) = 1$,
3) The nonsplit extensions $0 rightarrow M xrightarrow{f_1} E_1 rightarrow N rightarrow 0$ and $0rightarrow N xrightarrow {f_2} E_2 rightarrow M rightarrow 0$ have the property that $f_1$ and $f_2$ are minimal left approximations?
commutative-algebra modules representation-theory
add a comment |
up vote
1
down vote
favorite
Suppose $A$ is an algebra over $mathbb{C}$. Let $M$ and $N$ be $A$-modules with $Ext^{1}(M,N) neq 0 neq Ext^{1}(N,M)$.
By $Ein Ext^1(N,M)$, I mean we have a short exact sequence of the form
$$ 0 rightarrow M rightarrow E rightarrow N rightarrow 0.$$
I am wondering how the following two sets are related:
$$S_1 := { d : M oplus N textrm{ has a submodule of dimension } d } $$
$$S_2 := { d : exists textrm { nonsplit } Ein Ext^1(M,N) textrm { or } Ein Ext^1(N,M) textrm { s.t. } E textrm { has a submodule of dimension } d }.$$
I think $S_2 subseteq S_1$ since if $Ssubseteq E$ is a submodule with $0 rightarrow M rightarrow E rightarrow N rightarrow 0$, then viewing $M$ as a submodule of $E$, consider the exact sequence
$$0 rightarrow Scap M xrightarrow {i} S rightarrow textrm{coker }i rightarrow 0.$$
Then if we define a map $varphi :$ coker $i cong S/(Scap M)rightarrow N cong E/M$ by $[s] mapsto [s]$, this will be injective so the module $(S cap M)oplus textrm{im } varphi$ will be a submodule of $Moplus N$ with the same dimension as $S$.
I also think $S_2 subseteq S_1$ but I haven't been able to think of any way to see this.
Would it make a difference if I also assumed that
1) $M$ and $N$ are indecomposable,
2) $dim Ext^1(M,N) = dim Ext^1 (N,M) = 1$,
3) The nonsplit extensions $0 rightarrow M xrightarrow{f_1} E_1 rightarrow N rightarrow 0$ and $0rightarrow N xrightarrow {f_2} E_2 rightarrow M rightarrow 0$ have the property that $f_1$ and $f_2$ are minimal left approximations?
commutative-algebra modules representation-theory
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Suppose $A$ is an algebra over $mathbb{C}$. Let $M$ and $N$ be $A$-modules with $Ext^{1}(M,N) neq 0 neq Ext^{1}(N,M)$.
By $Ein Ext^1(N,M)$, I mean we have a short exact sequence of the form
$$ 0 rightarrow M rightarrow E rightarrow N rightarrow 0.$$
I am wondering how the following two sets are related:
$$S_1 := { d : M oplus N textrm{ has a submodule of dimension } d } $$
$$S_2 := { d : exists textrm { nonsplit } Ein Ext^1(M,N) textrm { or } Ein Ext^1(N,M) textrm { s.t. } E textrm { has a submodule of dimension } d }.$$
I think $S_2 subseteq S_1$ since if $Ssubseteq E$ is a submodule with $0 rightarrow M rightarrow E rightarrow N rightarrow 0$, then viewing $M$ as a submodule of $E$, consider the exact sequence
$$0 rightarrow Scap M xrightarrow {i} S rightarrow textrm{coker }i rightarrow 0.$$
Then if we define a map $varphi :$ coker $i cong S/(Scap M)rightarrow N cong E/M$ by $[s] mapsto [s]$, this will be injective so the module $(S cap M)oplus textrm{im } varphi$ will be a submodule of $Moplus N$ with the same dimension as $S$.
I also think $S_2 subseteq S_1$ but I haven't been able to think of any way to see this.
Would it make a difference if I also assumed that
1) $M$ and $N$ are indecomposable,
2) $dim Ext^1(M,N) = dim Ext^1 (N,M) = 1$,
3) The nonsplit extensions $0 rightarrow M xrightarrow{f_1} E_1 rightarrow N rightarrow 0$ and $0rightarrow N xrightarrow {f_2} E_2 rightarrow M rightarrow 0$ have the property that $f_1$ and $f_2$ are minimal left approximations?
commutative-algebra modules representation-theory
Suppose $A$ is an algebra over $mathbb{C}$. Let $M$ and $N$ be $A$-modules with $Ext^{1}(M,N) neq 0 neq Ext^{1}(N,M)$.
By $Ein Ext^1(N,M)$, I mean we have a short exact sequence of the form
$$ 0 rightarrow M rightarrow E rightarrow N rightarrow 0.$$
I am wondering how the following two sets are related:
$$S_1 := { d : M oplus N textrm{ has a submodule of dimension } d } $$
$$S_2 := { d : exists textrm { nonsplit } Ein Ext^1(M,N) textrm { or } Ein Ext^1(N,M) textrm { s.t. } E textrm { has a submodule of dimension } d }.$$
I think $S_2 subseteq S_1$ since if $Ssubseteq E$ is a submodule with $0 rightarrow M rightarrow E rightarrow N rightarrow 0$, then viewing $M$ as a submodule of $E$, consider the exact sequence
$$0 rightarrow Scap M xrightarrow {i} S rightarrow textrm{coker }i rightarrow 0.$$
Then if we define a map $varphi :$ coker $i cong S/(Scap M)rightarrow N cong E/M$ by $[s] mapsto [s]$, this will be injective so the module $(S cap M)oplus textrm{im } varphi$ will be a submodule of $Moplus N$ with the same dimension as $S$.
I also think $S_2 subseteq S_1$ but I haven't been able to think of any way to see this.
Would it make a difference if I also assumed that
1) $M$ and $N$ are indecomposable,
2) $dim Ext^1(M,N) = dim Ext^1 (N,M) = 1$,
3) The nonsplit extensions $0 rightarrow M xrightarrow{f_1} E_1 rightarrow N rightarrow 0$ and $0rightarrow N xrightarrow {f_2} E_2 rightarrow M rightarrow 0$ have the property that $f_1$ and $f_2$ are minimal left approximations?
commutative-algebra modules representation-theory
commutative-algebra modules representation-theory
edited Nov 15 at 10:40
asked Nov 15 at 0:19
Roger
63
63
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999009%2frelation-between-the-split-extension-and-nonsplit-extensions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown