Finding inverse Fourier transform of $frac{1}{(1+iw)^2}$












0












$begingroup$



Find the inverse Fourier transform of the function $$ frac{1}{(1+iw)^2}
$$




So I know the inverse is given by the integral $$ frac{1}{sqrt{2 pi}} int_{-infty}^infty frac{e^{iwx}}{(1+iw)^2}dw $$ but I don't know how to go about solving this.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you know the residue theorem?
    $endgroup$
    – Fabian
    Dec 1 '18 at 17:30










  • $begingroup$
    Note that the $e^{-iwx}$ should be $e^{iwx}$ for an inverse transform.
    $endgroup$
    – Tesseract
    Dec 1 '18 at 17:47










  • $begingroup$
    This might strongly depend on the different ways defining the Fourier transform.
    $endgroup$
    – Jonas Lenz
    Dec 1 '18 at 19:41










  • $begingroup$
    @JonasLenz Assume its given by the integral in my post.
    $endgroup$
    – Pame
    Dec 2 '18 at 9:44
















0












$begingroup$



Find the inverse Fourier transform of the function $$ frac{1}{(1+iw)^2}
$$




So I know the inverse is given by the integral $$ frac{1}{sqrt{2 pi}} int_{-infty}^infty frac{e^{iwx}}{(1+iw)^2}dw $$ but I don't know how to go about solving this.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you know the residue theorem?
    $endgroup$
    – Fabian
    Dec 1 '18 at 17:30










  • $begingroup$
    Note that the $e^{-iwx}$ should be $e^{iwx}$ for an inverse transform.
    $endgroup$
    – Tesseract
    Dec 1 '18 at 17:47










  • $begingroup$
    This might strongly depend on the different ways defining the Fourier transform.
    $endgroup$
    – Jonas Lenz
    Dec 1 '18 at 19:41










  • $begingroup$
    @JonasLenz Assume its given by the integral in my post.
    $endgroup$
    – Pame
    Dec 2 '18 at 9:44














0












0








0





$begingroup$



Find the inverse Fourier transform of the function $$ frac{1}{(1+iw)^2}
$$




So I know the inverse is given by the integral $$ frac{1}{sqrt{2 pi}} int_{-infty}^infty frac{e^{iwx}}{(1+iw)^2}dw $$ but I don't know how to go about solving this.










share|cite|improve this question











$endgroup$





Find the inverse Fourier transform of the function $$ frac{1}{(1+iw)^2}
$$




So I know the inverse is given by the integral $$ frac{1}{sqrt{2 pi}} int_{-infty}^infty frac{e^{iwx}}{(1+iw)^2}dw $$ but I don't know how to go about solving this.







fourier-analysis improper-integrals fourier-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 1 '18 at 19:21







Pame

















asked Dec 1 '18 at 16:51









PamePame

35817




35817












  • $begingroup$
    Do you know the residue theorem?
    $endgroup$
    – Fabian
    Dec 1 '18 at 17:30










  • $begingroup$
    Note that the $e^{-iwx}$ should be $e^{iwx}$ for an inverse transform.
    $endgroup$
    – Tesseract
    Dec 1 '18 at 17:47










  • $begingroup$
    This might strongly depend on the different ways defining the Fourier transform.
    $endgroup$
    – Jonas Lenz
    Dec 1 '18 at 19:41










  • $begingroup$
    @JonasLenz Assume its given by the integral in my post.
    $endgroup$
    – Pame
    Dec 2 '18 at 9:44


















  • $begingroup$
    Do you know the residue theorem?
    $endgroup$
    – Fabian
    Dec 1 '18 at 17:30










  • $begingroup$
    Note that the $e^{-iwx}$ should be $e^{iwx}$ for an inverse transform.
    $endgroup$
    – Tesseract
    Dec 1 '18 at 17:47










  • $begingroup$
    This might strongly depend on the different ways defining the Fourier transform.
    $endgroup$
    – Jonas Lenz
    Dec 1 '18 at 19:41










  • $begingroup$
    @JonasLenz Assume its given by the integral in my post.
    $endgroup$
    – Pame
    Dec 2 '18 at 9:44
















$begingroup$
Do you know the residue theorem?
$endgroup$
– Fabian
Dec 1 '18 at 17:30




$begingroup$
Do you know the residue theorem?
$endgroup$
– Fabian
Dec 1 '18 at 17:30












$begingroup$
Note that the $e^{-iwx}$ should be $e^{iwx}$ for an inverse transform.
$endgroup$
– Tesseract
Dec 1 '18 at 17:47




$begingroup$
Note that the $e^{-iwx}$ should be $e^{iwx}$ for an inverse transform.
$endgroup$
– Tesseract
Dec 1 '18 at 17:47












$begingroup$
This might strongly depend on the different ways defining the Fourier transform.
$endgroup$
– Jonas Lenz
Dec 1 '18 at 19:41




$begingroup$
This might strongly depend on the different ways defining the Fourier transform.
$endgroup$
– Jonas Lenz
Dec 1 '18 at 19:41












$begingroup$
@JonasLenz Assume its given by the integral in my post.
$endgroup$
– Pame
Dec 2 '18 at 9:44




$begingroup$
@JonasLenz Assume its given by the integral in my post.
$endgroup$
– Pame
Dec 2 '18 at 9:44










1 Answer
1






active

oldest

votes


















0












$begingroup$

A good strategy for determining (Inverse) Fourier Transforms is to use Fourier Transform theorems and Fourier Transform table lookups to the fullest extent possible, before attempting integration.



Observe that



$$dfrac{1}{(1+iomega)^2} = idfrac{d}{domega} dfrac{1}{1+iomega}$$



and note that the Fourier Transform has a derivative theorem



$$mathscr{F}left{x^n f(x)right}=mathscr{F}left{x^n mathscr{F}^{-1}left{ F(omega)right}right}= i^ndfrac{d^n}{domega^n} F(omega)$$



A table lookup of Fourier Transforms yields



$$mathscr{F}left{e^{-ax}H(x)right} = dfrac{1}{sqrt{2pi}}cdotdfrac{1}{a+iomega}$$



where $H(x)$ is the Heaviside unit step function. (That forward transform is easy to compute and verify for yourself.)



You can now say that



$$begin{align*}mathscr{F}^{-1}left{dfrac{1}{(1+iomega)^2}right} &= mathscr{F}^{-1}left{ idfrac{d}{domega} dfrac{1}{1+iomega}right}\
\
&= xmathscr{F}^{-1}left{ dfrac{1}{1+iomega}right}\
\
&= sqrt{2pi}xmathscr{F}^{-1}left{dfrac{1}{sqrt{2pi}}cdot dfrac{1}{1+iomega}right}\
\
&= sqrt{2pi}xe^{-x}H(x)\
end{align*}$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021555%2ffinding-inverse-fourier-transform-of-frac11iw2%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    A good strategy for determining (Inverse) Fourier Transforms is to use Fourier Transform theorems and Fourier Transform table lookups to the fullest extent possible, before attempting integration.



    Observe that



    $$dfrac{1}{(1+iomega)^2} = idfrac{d}{domega} dfrac{1}{1+iomega}$$



    and note that the Fourier Transform has a derivative theorem



    $$mathscr{F}left{x^n f(x)right}=mathscr{F}left{x^n mathscr{F}^{-1}left{ F(omega)right}right}= i^ndfrac{d^n}{domega^n} F(omega)$$



    A table lookup of Fourier Transforms yields



    $$mathscr{F}left{e^{-ax}H(x)right} = dfrac{1}{sqrt{2pi}}cdotdfrac{1}{a+iomega}$$



    where $H(x)$ is the Heaviside unit step function. (That forward transform is easy to compute and verify for yourself.)



    You can now say that



    $$begin{align*}mathscr{F}^{-1}left{dfrac{1}{(1+iomega)^2}right} &= mathscr{F}^{-1}left{ idfrac{d}{domega} dfrac{1}{1+iomega}right}\
    \
    &= xmathscr{F}^{-1}left{ dfrac{1}{1+iomega}right}\
    \
    &= sqrt{2pi}xmathscr{F}^{-1}left{dfrac{1}{sqrt{2pi}}cdot dfrac{1}{1+iomega}right}\
    \
    &= sqrt{2pi}xe^{-x}H(x)\
    end{align*}$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      A good strategy for determining (Inverse) Fourier Transforms is to use Fourier Transform theorems and Fourier Transform table lookups to the fullest extent possible, before attempting integration.



      Observe that



      $$dfrac{1}{(1+iomega)^2} = idfrac{d}{domega} dfrac{1}{1+iomega}$$



      and note that the Fourier Transform has a derivative theorem



      $$mathscr{F}left{x^n f(x)right}=mathscr{F}left{x^n mathscr{F}^{-1}left{ F(omega)right}right}= i^ndfrac{d^n}{domega^n} F(omega)$$



      A table lookup of Fourier Transforms yields



      $$mathscr{F}left{e^{-ax}H(x)right} = dfrac{1}{sqrt{2pi}}cdotdfrac{1}{a+iomega}$$



      where $H(x)$ is the Heaviside unit step function. (That forward transform is easy to compute and verify for yourself.)



      You can now say that



      $$begin{align*}mathscr{F}^{-1}left{dfrac{1}{(1+iomega)^2}right} &= mathscr{F}^{-1}left{ idfrac{d}{domega} dfrac{1}{1+iomega}right}\
      \
      &= xmathscr{F}^{-1}left{ dfrac{1}{1+iomega}right}\
      \
      &= sqrt{2pi}xmathscr{F}^{-1}left{dfrac{1}{sqrt{2pi}}cdot dfrac{1}{1+iomega}right}\
      \
      &= sqrt{2pi}xe^{-x}H(x)\
      end{align*}$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        A good strategy for determining (Inverse) Fourier Transforms is to use Fourier Transform theorems and Fourier Transform table lookups to the fullest extent possible, before attempting integration.



        Observe that



        $$dfrac{1}{(1+iomega)^2} = idfrac{d}{domega} dfrac{1}{1+iomega}$$



        and note that the Fourier Transform has a derivative theorem



        $$mathscr{F}left{x^n f(x)right}=mathscr{F}left{x^n mathscr{F}^{-1}left{ F(omega)right}right}= i^ndfrac{d^n}{domega^n} F(omega)$$



        A table lookup of Fourier Transforms yields



        $$mathscr{F}left{e^{-ax}H(x)right} = dfrac{1}{sqrt{2pi}}cdotdfrac{1}{a+iomega}$$



        where $H(x)$ is the Heaviside unit step function. (That forward transform is easy to compute and verify for yourself.)



        You can now say that



        $$begin{align*}mathscr{F}^{-1}left{dfrac{1}{(1+iomega)^2}right} &= mathscr{F}^{-1}left{ idfrac{d}{domega} dfrac{1}{1+iomega}right}\
        \
        &= xmathscr{F}^{-1}left{ dfrac{1}{1+iomega}right}\
        \
        &= sqrt{2pi}xmathscr{F}^{-1}left{dfrac{1}{sqrt{2pi}}cdot dfrac{1}{1+iomega}right}\
        \
        &= sqrt{2pi}xe^{-x}H(x)\
        end{align*}$$






        share|cite|improve this answer









        $endgroup$



        A good strategy for determining (Inverse) Fourier Transforms is to use Fourier Transform theorems and Fourier Transform table lookups to the fullest extent possible, before attempting integration.



        Observe that



        $$dfrac{1}{(1+iomega)^2} = idfrac{d}{domega} dfrac{1}{1+iomega}$$



        and note that the Fourier Transform has a derivative theorem



        $$mathscr{F}left{x^n f(x)right}=mathscr{F}left{x^n mathscr{F}^{-1}left{ F(omega)right}right}= i^ndfrac{d^n}{domega^n} F(omega)$$



        A table lookup of Fourier Transforms yields



        $$mathscr{F}left{e^{-ax}H(x)right} = dfrac{1}{sqrt{2pi}}cdotdfrac{1}{a+iomega}$$



        where $H(x)$ is the Heaviside unit step function. (That forward transform is easy to compute and verify for yourself.)



        You can now say that



        $$begin{align*}mathscr{F}^{-1}left{dfrac{1}{(1+iomega)^2}right} &= mathscr{F}^{-1}left{ idfrac{d}{domega} dfrac{1}{1+iomega}right}\
        \
        &= xmathscr{F}^{-1}left{ dfrac{1}{1+iomega}right}\
        \
        &= sqrt{2pi}xmathscr{F}^{-1}left{dfrac{1}{sqrt{2pi}}cdot dfrac{1}{1+iomega}right}\
        \
        &= sqrt{2pi}xe^{-x}H(x)\
        end{align*}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 2 '18 at 23:11









        Andy WallsAndy Walls

        1,594128




        1,594128






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021555%2ffinding-inverse-fourier-transform-of-frac11iw2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa