Finding inverse Fourier transform of $frac{1}{(1+iw)^2}$
$begingroup$
Find the inverse Fourier transform of the function $$ frac{1}{(1+iw)^2}
$$
So I know the inverse is given by the integral $$ frac{1}{sqrt{2 pi}} int_{-infty}^infty frac{e^{iwx}}{(1+iw)^2}dw $$ but I don't know how to go about solving this.
fourier-analysis improper-integrals fourier-transform
$endgroup$
add a comment |
$begingroup$
Find the inverse Fourier transform of the function $$ frac{1}{(1+iw)^2}
$$
So I know the inverse is given by the integral $$ frac{1}{sqrt{2 pi}} int_{-infty}^infty frac{e^{iwx}}{(1+iw)^2}dw $$ but I don't know how to go about solving this.
fourier-analysis improper-integrals fourier-transform
$endgroup$
$begingroup$
Do you know the residue theorem?
$endgroup$
– Fabian
Dec 1 '18 at 17:30
$begingroup$
Note that the $e^{-iwx}$ should be $e^{iwx}$ for an inverse transform.
$endgroup$
– Tesseract
Dec 1 '18 at 17:47
$begingroup$
This might strongly depend on the different ways defining the Fourier transform.
$endgroup$
– Jonas Lenz
Dec 1 '18 at 19:41
$begingroup$
@JonasLenz Assume its given by the integral in my post.
$endgroup$
– Pame
Dec 2 '18 at 9:44
add a comment |
$begingroup$
Find the inverse Fourier transform of the function $$ frac{1}{(1+iw)^2}
$$
So I know the inverse is given by the integral $$ frac{1}{sqrt{2 pi}} int_{-infty}^infty frac{e^{iwx}}{(1+iw)^2}dw $$ but I don't know how to go about solving this.
fourier-analysis improper-integrals fourier-transform
$endgroup$
Find the inverse Fourier transform of the function $$ frac{1}{(1+iw)^2}
$$
So I know the inverse is given by the integral $$ frac{1}{sqrt{2 pi}} int_{-infty}^infty frac{e^{iwx}}{(1+iw)^2}dw $$ but I don't know how to go about solving this.
fourier-analysis improper-integrals fourier-transform
fourier-analysis improper-integrals fourier-transform
edited Dec 1 '18 at 19:21
Pame
asked Dec 1 '18 at 16:51
PamePame
35817
35817
$begingroup$
Do you know the residue theorem?
$endgroup$
– Fabian
Dec 1 '18 at 17:30
$begingroup$
Note that the $e^{-iwx}$ should be $e^{iwx}$ for an inverse transform.
$endgroup$
– Tesseract
Dec 1 '18 at 17:47
$begingroup$
This might strongly depend on the different ways defining the Fourier transform.
$endgroup$
– Jonas Lenz
Dec 1 '18 at 19:41
$begingroup$
@JonasLenz Assume its given by the integral in my post.
$endgroup$
– Pame
Dec 2 '18 at 9:44
add a comment |
$begingroup$
Do you know the residue theorem?
$endgroup$
– Fabian
Dec 1 '18 at 17:30
$begingroup$
Note that the $e^{-iwx}$ should be $e^{iwx}$ for an inverse transform.
$endgroup$
– Tesseract
Dec 1 '18 at 17:47
$begingroup$
This might strongly depend on the different ways defining the Fourier transform.
$endgroup$
– Jonas Lenz
Dec 1 '18 at 19:41
$begingroup$
@JonasLenz Assume its given by the integral in my post.
$endgroup$
– Pame
Dec 2 '18 at 9:44
$begingroup$
Do you know the residue theorem?
$endgroup$
– Fabian
Dec 1 '18 at 17:30
$begingroup$
Do you know the residue theorem?
$endgroup$
– Fabian
Dec 1 '18 at 17:30
$begingroup$
Note that the $e^{-iwx}$ should be $e^{iwx}$ for an inverse transform.
$endgroup$
– Tesseract
Dec 1 '18 at 17:47
$begingroup$
Note that the $e^{-iwx}$ should be $e^{iwx}$ for an inverse transform.
$endgroup$
– Tesseract
Dec 1 '18 at 17:47
$begingroup$
This might strongly depend on the different ways defining the Fourier transform.
$endgroup$
– Jonas Lenz
Dec 1 '18 at 19:41
$begingroup$
This might strongly depend on the different ways defining the Fourier transform.
$endgroup$
– Jonas Lenz
Dec 1 '18 at 19:41
$begingroup$
@JonasLenz Assume its given by the integral in my post.
$endgroup$
– Pame
Dec 2 '18 at 9:44
$begingroup$
@JonasLenz Assume its given by the integral in my post.
$endgroup$
– Pame
Dec 2 '18 at 9:44
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
A good strategy for determining (Inverse) Fourier Transforms is to use Fourier Transform theorems and Fourier Transform table lookups to the fullest extent possible, before attempting integration.
Observe that
$$dfrac{1}{(1+iomega)^2} = idfrac{d}{domega} dfrac{1}{1+iomega}$$
and note that the Fourier Transform has a derivative theorem
$$mathscr{F}left{x^n f(x)right}=mathscr{F}left{x^n mathscr{F}^{-1}left{ F(omega)right}right}= i^ndfrac{d^n}{domega^n} F(omega)$$
A table lookup of Fourier Transforms yields
$$mathscr{F}left{e^{-ax}H(x)right} = dfrac{1}{sqrt{2pi}}cdotdfrac{1}{a+iomega}$$
where $H(x)$ is the Heaviside unit step function. (That forward transform is easy to compute and verify for yourself.)
You can now say that
$$begin{align*}mathscr{F}^{-1}left{dfrac{1}{(1+iomega)^2}right} &= mathscr{F}^{-1}left{ idfrac{d}{domega} dfrac{1}{1+iomega}right}\
\
&= xmathscr{F}^{-1}left{ dfrac{1}{1+iomega}right}\
\
&= sqrt{2pi}xmathscr{F}^{-1}left{dfrac{1}{sqrt{2pi}}cdot dfrac{1}{1+iomega}right}\
\
&= sqrt{2pi}xe^{-x}H(x)\
end{align*}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021555%2ffinding-inverse-fourier-transform-of-frac11iw2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A good strategy for determining (Inverse) Fourier Transforms is to use Fourier Transform theorems and Fourier Transform table lookups to the fullest extent possible, before attempting integration.
Observe that
$$dfrac{1}{(1+iomega)^2} = idfrac{d}{domega} dfrac{1}{1+iomega}$$
and note that the Fourier Transform has a derivative theorem
$$mathscr{F}left{x^n f(x)right}=mathscr{F}left{x^n mathscr{F}^{-1}left{ F(omega)right}right}= i^ndfrac{d^n}{domega^n} F(omega)$$
A table lookup of Fourier Transforms yields
$$mathscr{F}left{e^{-ax}H(x)right} = dfrac{1}{sqrt{2pi}}cdotdfrac{1}{a+iomega}$$
where $H(x)$ is the Heaviside unit step function. (That forward transform is easy to compute and verify for yourself.)
You can now say that
$$begin{align*}mathscr{F}^{-1}left{dfrac{1}{(1+iomega)^2}right} &= mathscr{F}^{-1}left{ idfrac{d}{domega} dfrac{1}{1+iomega}right}\
\
&= xmathscr{F}^{-1}left{ dfrac{1}{1+iomega}right}\
\
&= sqrt{2pi}xmathscr{F}^{-1}left{dfrac{1}{sqrt{2pi}}cdot dfrac{1}{1+iomega}right}\
\
&= sqrt{2pi}xe^{-x}H(x)\
end{align*}$$
$endgroup$
add a comment |
$begingroup$
A good strategy for determining (Inverse) Fourier Transforms is to use Fourier Transform theorems and Fourier Transform table lookups to the fullest extent possible, before attempting integration.
Observe that
$$dfrac{1}{(1+iomega)^2} = idfrac{d}{domega} dfrac{1}{1+iomega}$$
and note that the Fourier Transform has a derivative theorem
$$mathscr{F}left{x^n f(x)right}=mathscr{F}left{x^n mathscr{F}^{-1}left{ F(omega)right}right}= i^ndfrac{d^n}{domega^n} F(omega)$$
A table lookup of Fourier Transforms yields
$$mathscr{F}left{e^{-ax}H(x)right} = dfrac{1}{sqrt{2pi}}cdotdfrac{1}{a+iomega}$$
where $H(x)$ is the Heaviside unit step function. (That forward transform is easy to compute and verify for yourself.)
You can now say that
$$begin{align*}mathscr{F}^{-1}left{dfrac{1}{(1+iomega)^2}right} &= mathscr{F}^{-1}left{ idfrac{d}{domega} dfrac{1}{1+iomega}right}\
\
&= xmathscr{F}^{-1}left{ dfrac{1}{1+iomega}right}\
\
&= sqrt{2pi}xmathscr{F}^{-1}left{dfrac{1}{sqrt{2pi}}cdot dfrac{1}{1+iomega}right}\
\
&= sqrt{2pi}xe^{-x}H(x)\
end{align*}$$
$endgroup$
add a comment |
$begingroup$
A good strategy for determining (Inverse) Fourier Transforms is to use Fourier Transform theorems and Fourier Transform table lookups to the fullest extent possible, before attempting integration.
Observe that
$$dfrac{1}{(1+iomega)^2} = idfrac{d}{domega} dfrac{1}{1+iomega}$$
and note that the Fourier Transform has a derivative theorem
$$mathscr{F}left{x^n f(x)right}=mathscr{F}left{x^n mathscr{F}^{-1}left{ F(omega)right}right}= i^ndfrac{d^n}{domega^n} F(omega)$$
A table lookup of Fourier Transforms yields
$$mathscr{F}left{e^{-ax}H(x)right} = dfrac{1}{sqrt{2pi}}cdotdfrac{1}{a+iomega}$$
where $H(x)$ is the Heaviside unit step function. (That forward transform is easy to compute and verify for yourself.)
You can now say that
$$begin{align*}mathscr{F}^{-1}left{dfrac{1}{(1+iomega)^2}right} &= mathscr{F}^{-1}left{ idfrac{d}{domega} dfrac{1}{1+iomega}right}\
\
&= xmathscr{F}^{-1}left{ dfrac{1}{1+iomega}right}\
\
&= sqrt{2pi}xmathscr{F}^{-1}left{dfrac{1}{sqrt{2pi}}cdot dfrac{1}{1+iomega}right}\
\
&= sqrt{2pi}xe^{-x}H(x)\
end{align*}$$
$endgroup$
A good strategy for determining (Inverse) Fourier Transforms is to use Fourier Transform theorems and Fourier Transform table lookups to the fullest extent possible, before attempting integration.
Observe that
$$dfrac{1}{(1+iomega)^2} = idfrac{d}{domega} dfrac{1}{1+iomega}$$
and note that the Fourier Transform has a derivative theorem
$$mathscr{F}left{x^n f(x)right}=mathscr{F}left{x^n mathscr{F}^{-1}left{ F(omega)right}right}= i^ndfrac{d^n}{domega^n} F(omega)$$
A table lookup of Fourier Transforms yields
$$mathscr{F}left{e^{-ax}H(x)right} = dfrac{1}{sqrt{2pi}}cdotdfrac{1}{a+iomega}$$
where $H(x)$ is the Heaviside unit step function. (That forward transform is easy to compute and verify for yourself.)
You can now say that
$$begin{align*}mathscr{F}^{-1}left{dfrac{1}{(1+iomega)^2}right} &= mathscr{F}^{-1}left{ idfrac{d}{domega} dfrac{1}{1+iomega}right}\
\
&= xmathscr{F}^{-1}left{ dfrac{1}{1+iomega}right}\
\
&= sqrt{2pi}xmathscr{F}^{-1}left{dfrac{1}{sqrt{2pi}}cdot dfrac{1}{1+iomega}right}\
\
&= sqrt{2pi}xe^{-x}H(x)\
end{align*}$$
answered Dec 2 '18 at 23:11
Andy WallsAndy Walls
1,594128
1,594128
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021555%2ffinding-inverse-fourier-transform-of-frac11iw2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Do you know the residue theorem?
$endgroup$
– Fabian
Dec 1 '18 at 17:30
$begingroup$
Note that the $e^{-iwx}$ should be $e^{iwx}$ for an inverse transform.
$endgroup$
– Tesseract
Dec 1 '18 at 17:47
$begingroup$
This might strongly depend on the different ways defining the Fourier transform.
$endgroup$
– Jonas Lenz
Dec 1 '18 at 19:41
$begingroup$
@JonasLenz Assume its given by the integral in my post.
$endgroup$
– Pame
Dec 2 '18 at 9:44