How to find the upper Riemann integral of following function?












2












$begingroup$


$f(x)$ is defined on $[a,b]$ as -



$= 0$ if $x ∈ [a, b] ∩ Q$



$= x$ otherwise



Lower integral is $0$ and i think that upper integral should be $(b^2 - a^2)/2$(i may be wrong also) but i am not able to prove it.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Bound it above by a step function.
    $endgroup$
    – Lord Shark the Unknown
    Dec 1 '18 at 17:36










  • $begingroup$
    @LordSharktheUnknown after solving that i get $<=$ inequality and not $=$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:14


















2












$begingroup$


$f(x)$ is defined on $[a,b]$ as -



$= 0$ if $x ∈ [a, b] ∩ Q$



$= x$ otherwise



Lower integral is $0$ and i think that upper integral should be $(b^2 - a^2)/2$(i may be wrong also) but i am not able to prove it.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Bound it above by a step function.
    $endgroup$
    – Lord Shark the Unknown
    Dec 1 '18 at 17:36










  • $begingroup$
    @LordSharktheUnknown after solving that i get $<=$ inequality and not $=$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:14
















2












2








2


2



$begingroup$


$f(x)$ is defined on $[a,b]$ as -



$= 0$ if $x ∈ [a, b] ∩ Q$



$= x$ otherwise



Lower integral is $0$ and i think that upper integral should be $(b^2 - a^2)/2$(i may be wrong also) but i am not able to prove it.










share|cite|improve this question









$endgroup$




$f(x)$ is defined on $[a,b]$ as -



$= 0$ if $x ∈ [a, b] ∩ Q$



$= x$ otherwise



Lower integral is $0$ and i think that upper integral should be $(b^2 - a^2)/2$(i may be wrong also) but i am not able to prove it.







real-analysis integration riemann-integration






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 1 '18 at 17:26









BhowmickBhowmick

1438




1438












  • $begingroup$
    Bound it above by a step function.
    $endgroup$
    – Lord Shark the Unknown
    Dec 1 '18 at 17:36










  • $begingroup$
    @LordSharktheUnknown after solving that i get $<=$ inequality and not $=$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:14




















  • $begingroup$
    Bound it above by a step function.
    $endgroup$
    – Lord Shark the Unknown
    Dec 1 '18 at 17:36










  • $begingroup$
    @LordSharktheUnknown after solving that i get $<=$ inequality and not $=$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:14


















$begingroup$
Bound it above by a step function.
$endgroup$
– Lord Shark the Unknown
Dec 1 '18 at 17:36




$begingroup$
Bound it above by a step function.
$endgroup$
– Lord Shark the Unknown
Dec 1 '18 at 17:36












$begingroup$
@LordSharktheUnknown after solving that i get $<=$ inequality and not $=$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:14






$begingroup$
@LordSharktheUnknown after solving that i get $<=$ inequality and not $=$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:14












2 Answers
2






active

oldest

votes


















3












$begingroup$

Since the irrationals are dense, we have $sup_{x in [x_{j-1},x_j]}f(x) = x_j$.



Hence, for any partition, $a = x_0 < x_1 < ldots < x_n = b$, the upper Darboux sum is



$$U(P,f) = sum_{j=1}^n x_j(x_j - x_{j-1}) = frac{1}{2} sum_{j=1}^n(x_j+x_{j-1})(x_j - x_{j-1}) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})(x_j - x_{j-1}) \ = frac{1}{2} sum_{j=1}^n(x_j^2 - x_{j-1}^2) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{b^2-a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2, $$



Since the last term on the RHS is nonnegative we have, for the upper integral,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) geqslant frac{b^2 - a^2}{2}$$



To prove we actually have $inf_{P}U(P,f) = frac{b^2 - a^2}{2}$, we show that for any $epsilon > 0$ there exists a partition such that



$$U(P,f) < frac{b^2 - a^2}{2} + epsilon$$



For a uniform partition where $x_j - x_{j-1} = frac{b-a}{n}$ for $j=1,2, ldots, n$ we have



$$frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{1}{2} nfrac{(b-a)^2}{n^2} = frac{(b-a)^2}{2n}$$



Now choose $n > frac{(b-a)^2}{2epsilon}$ and we have



$$begin{align}U(P,f) &=frac{b^2 - a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2\ &= frac{b^2 - a^2}{2}+ frac{(b-a)^2}{2n} \&< frac{b^2 - a^2}{2} + epsilonend{align}$$



Therefore,



$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) = frac{b^2 - a^2}{2}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
    $endgroup$
    – Paramanand Singh
    Dec 2 '18 at 3:31



















1












$begingroup$

For any partition $a=x_0<x_1<ldots <x_n=b$, the Riemann upper sum is
$$
U_{mathbf x}=sum_{i=1}^n(x_i-x_{i-1})sup_{x_{i-1}<x<x_i}f(x)
$$

In each interval $(x_{i-1},x_i)$ there is some real numbers $rin(x_{i-1},x_i)$ and hence the supremum is $sup_{x_{i-1}<x<x_i}f(x)ge f(x_{i-1})=x_{i-1}$.



Therefore
$$
U_{mathbf x}ge sum_{i=1}^n(x_i-x_{i-1})x_{i-1}
$$

Here to compute a bound, we can take any, easy to compute, subdivision. I take $x_i=a+frac{(b-a)i}{n}=a+ih$



begin{align}
sum_{i=1}^n(x_i-x_{i-1})x_{i-1}&=hsum_{i=1}^n(a+(i-1)h) \
&=frac{1}{2}h(2a+h(n-1))n \
&=frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})
end{align}

With
$$
lim_{ntoinfty}frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})=frac{1}{2}(b^2-a^2)
$$

Hence you have your result,




  • as $ntoinfty$, the upper bound is $U_xgefrac{1}{2}(b-a)^2$

  • as upper bound is greater that lower bound, the function is not Riemann integrable






share|cite|improve this answer











$endgroup$













  • $begingroup$
    But how to prove that upper integral is equal to $(b*b - a*a)/2$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:42










  • $begingroup$
    it is upper bound when $n->infty$, as described in the answer, is it ok or not?
    $endgroup$
    – Picaud Vincent
    Dec 1 '18 at 18:55










  • $begingroup$
    but i want upper bound equal to $(b^2-a^2)/2$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:56










  • $begingroup$
    read question once again
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:56










  • $begingroup$
    i have to go right now, read it when back sorry. hold on
    $endgroup$
    – Picaud Vincent
    Dec 1 '18 at 18:56











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021594%2fhow-to-find-the-upper-riemann-integral-of-following-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Since the irrationals are dense, we have $sup_{x in [x_{j-1},x_j]}f(x) = x_j$.



Hence, for any partition, $a = x_0 < x_1 < ldots < x_n = b$, the upper Darboux sum is



$$U(P,f) = sum_{j=1}^n x_j(x_j - x_{j-1}) = frac{1}{2} sum_{j=1}^n(x_j+x_{j-1})(x_j - x_{j-1}) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})(x_j - x_{j-1}) \ = frac{1}{2} sum_{j=1}^n(x_j^2 - x_{j-1}^2) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{b^2-a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2, $$



Since the last term on the RHS is nonnegative we have, for the upper integral,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) geqslant frac{b^2 - a^2}{2}$$



To prove we actually have $inf_{P}U(P,f) = frac{b^2 - a^2}{2}$, we show that for any $epsilon > 0$ there exists a partition such that



$$U(P,f) < frac{b^2 - a^2}{2} + epsilon$$



For a uniform partition where $x_j - x_{j-1} = frac{b-a}{n}$ for $j=1,2, ldots, n$ we have



$$frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{1}{2} nfrac{(b-a)^2}{n^2} = frac{(b-a)^2}{2n}$$



Now choose $n > frac{(b-a)^2}{2epsilon}$ and we have



$$begin{align}U(P,f) &=frac{b^2 - a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2\ &= frac{b^2 - a^2}{2}+ frac{(b-a)^2}{2n} \&< frac{b^2 - a^2}{2} + epsilonend{align}$$



Therefore,



$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) = frac{b^2 - a^2}{2}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
    $endgroup$
    – Paramanand Singh
    Dec 2 '18 at 3:31
















3












$begingroup$

Since the irrationals are dense, we have $sup_{x in [x_{j-1},x_j]}f(x) = x_j$.



Hence, for any partition, $a = x_0 < x_1 < ldots < x_n = b$, the upper Darboux sum is



$$U(P,f) = sum_{j=1}^n x_j(x_j - x_{j-1}) = frac{1}{2} sum_{j=1}^n(x_j+x_{j-1})(x_j - x_{j-1}) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})(x_j - x_{j-1}) \ = frac{1}{2} sum_{j=1}^n(x_j^2 - x_{j-1}^2) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{b^2-a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2, $$



Since the last term on the RHS is nonnegative we have, for the upper integral,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) geqslant frac{b^2 - a^2}{2}$$



To prove we actually have $inf_{P}U(P,f) = frac{b^2 - a^2}{2}$, we show that for any $epsilon > 0$ there exists a partition such that



$$U(P,f) < frac{b^2 - a^2}{2} + epsilon$$



For a uniform partition where $x_j - x_{j-1} = frac{b-a}{n}$ for $j=1,2, ldots, n$ we have



$$frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{1}{2} nfrac{(b-a)^2}{n^2} = frac{(b-a)^2}{2n}$$



Now choose $n > frac{(b-a)^2}{2epsilon}$ and we have



$$begin{align}U(P,f) &=frac{b^2 - a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2\ &= frac{b^2 - a^2}{2}+ frac{(b-a)^2}{2n} \&< frac{b^2 - a^2}{2} + epsilonend{align}$$



Therefore,



$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) = frac{b^2 - a^2}{2}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
    $endgroup$
    – Paramanand Singh
    Dec 2 '18 at 3:31














3












3








3





$begingroup$

Since the irrationals are dense, we have $sup_{x in [x_{j-1},x_j]}f(x) = x_j$.



Hence, for any partition, $a = x_0 < x_1 < ldots < x_n = b$, the upper Darboux sum is



$$U(P,f) = sum_{j=1}^n x_j(x_j - x_{j-1}) = frac{1}{2} sum_{j=1}^n(x_j+x_{j-1})(x_j - x_{j-1}) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})(x_j - x_{j-1}) \ = frac{1}{2} sum_{j=1}^n(x_j^2 - x_{j-1}^2) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{b^2-a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2, $$



Since the last term on the RHS is nonnegative we have, for the upper integral,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) geqslant frac{b^2 - a^2}{2}$$



To prove we actually have $inf_{P}U(P,f) = frac{b^2 - a^2}{2}$, we show that for any $epsilon > 0$ there exists a partition such that



$$U(P,f) < frac{b^2 - a^2}{2} + epsilon$$



For a uniform partition where $x_j - x_{j-1} = frac{b-a}{n}$ for $j=1,2, ldots, n$ we have



$$frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{1}{2} nfrac{(b-a)^2}{n^2} = frac{(b-a)^2}{2n}$$



Now choose $n > frac{(b-a)^2}{2epsilon}$ and we have



$$begin{align}U(P,f) &=frac{b^2 - a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2\ &= frac{b^2 - a^2}{2}+ frac{(b-a)^2}{2n} \&< frac{b^2 - a^2}{2} + epsilonend{align}$$



Therefore,



$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) = frac{b^2 - a^2}{2}$$






share|cite|improve this answer











$endgroup$



Since the irrationals are dense, we have $sup_{x in [x_{j-1},x_j]}f(x) = x_j$.



Hence, for any partition, $a = x_0 < x_1 < ldots < x_n = b$, the upper Darboux sum is



$$U(P,f) = sum_{j=1}^n x_j(x_j - x_{j-1}) = frac{1}{2} sum_{j=1}^n(x_j+x_{j-1})(x_j - x_{j-1}) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})(x_j - x_{j-1}) \ = frac{1}{2} sum_{j=1}^n(x_j^2 - x_{j-1}^2) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{b^2-a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2, $$



Since the last term on the RHS is nonnegative we have, for the upper integral,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) geqslant frac{b^2 - a^2}{2}$$



To prove we actually have $inf_{P}U(P,f) = frac{b^2 - a^2}{2}$, we show that for any $epsilon > 0$ there exists a partition such that



$$U(P,f) < frac{b^2 - a^2}{2} + epsilon$$



For a uniform partition where $x_j - x_{j-1} = frac{b-a}{n}$ for $j=1,2, ldots, n$ we have



$$frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{1}{2} nfrac{(b-a)^2}{n^2} = frac{(b-a)^2}{2n}$$



Now choose $n > frac{(b-a)^2}{2epsilon}$ and we have



$$begin{align}U(P,f) &=frac{b^2 - a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2\ &= frac{b^2 - a^2}{2}+ frac{(b-a)^2}{2n} \&< frac{b^2 - a^2}{2} + epsilonend{align}$$



Therefore,



$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) = frac{b^2 - a^2}{2}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 2 '18 at 3:36

























answered Dec 1 '18 at 20:01









RRLRRL

50k42573




50k42573












  • $begingroup$
    We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
    $endgroup$
    – Paramanand Singh
    Dec 2 '18 at 3:31


















  • $begingroup$
    We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
    $endgroup$
    – Paramanand Singh
    Dec 2 '18 at 3:31
















$begingroup$
We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
$endgroup$
– Paramanand Singh
Dec 2 '18 at 3:31




$begingroup$
We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
$endgroup$
– Paramanand Singh
Dec 2 '18 at 3:31











1












$begingroup$

For any partition $a=x_0<x_1<ldots <x_n=b$, the Riemann upper sum is
$$
U_{mathbf x}=sum_{i=1}^n(x_i-x_{i-1})sup_{x_{i-1}<x<x_i}f(x)
$$

In each interval $(x_{i-1},x_i)$ there is some real numbers $rin(x_{i-1},x_i)$ and hence the supremum is $sup_{x_{i-1}<x<x_i}f(x)ge f(x_{i-1})=x_{i-1}$.



Therefore
$$
U_{mathbf x}ge sum_{i=1}^n(x_i-x_{i-1})x_{i-1}
$$

Here to compute a bound, we can take any, easy to compute, subdivision. I take $x_i=a+frac{(b-a)i}{n}=a+ih$



begin{align}
sum_{i=1}^n(x_i-x_{i-1})x_{i-1}&=hsum_{i=1}^n(a+(i-1)h) \
&=frac{1}{2}h(2a+h(n-1))n \
&=frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})
end{align}

With
$$
lim_{ntoinfty}frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})=frac{1}{2}(b^2-a^2)
$$

Hence you have your result,




  • as $ntoinfty$, the upper bound is $U_xgefrac{1}{2}(b-a)^2$

  • as upper bound is greater that lower bound, the function is not Riemann integrable






share|cite|improve this answer











$endgroup$













  • $begingroup$
    But how to prove that upper integral is equal to $(b*b - a*a)/2$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:42










  • $begingroup$
    it is upper bound when $n->infty$, as described in the answer, is it ok or not?
    $endgroup$
    – Picaud Vincent
    Dec 1 '18 at 18:55










  • $begingroup$
    but i want upper bound equal to $(b^2-a^2)/2$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:56










  • $begingroup$
    read question once again
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:56










  • $begingroup$
    i have to go right now, read it when back sorry. hold on
    $endgroup$
    – Picaud Vincent
    Dec 1 '18 at 18:56
















1












$begingroup$

For any partition $a=x_0<x_1<ldots <x_n=b$, the Riemann upper sum is
$$
U_{mathbf x}=sum_{i=1}^n(x_i-x_{i-1})sup_{x_{i-1}<x<x_i}f(x)
$$

In each interval $(x_{i-1},x_i)$ there is some real numbers $rin(x_{i-1},x_i)$ and hence the supremum is $sup_{x_{i-1}<x<x_i}f(x)ge f(x_{i-1})=x_{i-1}$.



Therefore
$$
U_{mathbf x}ge sum_{i=1}^n(x_i-x_{i-1})x_{i-1}
$$

Here to compute a bound, we can take any, easy to compute, subdivision. I take $x_i=a+frac{(b-a)i}{n}=a+ih$



begin{align}
sum_{i=1}^n(x_i-x_{i-1})x_{i-1}&=hsum_{i=1}^n(a+(i-1)h) \
&=frac{1}{2}h(2a+h(n-1))n \
&=frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})
end{align}

With
$$
lim_{ntoinfty}frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})=frac{1}{2}(b^2-a^2)
$$

Hence you have your result,




  • as $ntoinfty$, the upper bound is $U_xgefrac{1}{2}(b-a)^2$

  • as upper bound is greater that lower bound, the function is not Riemann integrable






share|cite|improve this answer











$endgroup$













  • $begingroup$
    But how to prove that upper integral is equal to $(b*b - a*a)/2$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:42










  • $begingroup$
    it is upper bound when $n->infty$, as described in the answer, is it ok or not?
    $endgroup$
    – Picaud Vincent
    Dec 1 '18 at 18:55










  • $begingroup$
    but i want upper bound equal to $(b^2-a^2)/2$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:56










  • $begingroup$
    read question once again
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:56










  • $begingroup$
    i have to go right now, read it when back sorry. hold on
    $endgroup$
    – Picaud Vincent
    Dec 1 '18 at 18:56














1












1








1





$begingroup$

For any partition $a=x_0<x_1<ldots <x_n=b$, the Riemann upper sum is
$$
U_{mathbf x}=sum_{i=1}^n(x_i-x_{i-1})sup_{x_{i-1}<x<x_i}f(x)
$$

In each interval $(x_{i-1},x_i)$ there is some real numbers $rin(x_{i-1},x_i)$ and hence the supremum is $sup_{x_{i-1}<x<x_i}f(x)ge f(x_{i-1})=x_{i-1}$.



Therefore
$$
U_{mathbf x}ge sum_{i=1}^n(x_i-x_{i-1})x_{i-1}
$$

Here to compute a bound, we can take any, easy to compute, subdivision. I take $x_i=a+frac{(b-a)i}{n}=a+ih$



begin{align}
sum_{i=1}^n(x_i-x_{i-1})x_{i-1}&=hsum_{i=1}^n(a+(i-1)h) \
&=frac{1}{2}h(2a+h(n-1))n \
&=frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})
end{align}

With
$$
lim_{ntoinfty}frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})=frac{1}{2}(b^2-a^2)
$$

Hence you have your result,




  • as $ntoinfty$, the upper bound is $U_xgefrac{1}{2}(b-a)^2$

  • as upper bound is greater that lower bound, the function is not Riemann integrable






share|cite|improve this answer











$endgroup$



For any partition $a=x_0<x_1<ldots <x_n=b$, the Riemann upper sum is
$$
U_{mathbf x}=sum_{i=1}^n(x_i-x_{i-1})sup_{x_{i-1}<x<x_i}f(x)
$$

In each interval $(x_{i-1},x_i)$ there is some real numbers $rin(x_{i-1},x_i)$ and hence the supremum is $sup_{x_{i-1}<x<x_i}f(x)ge f(x_{i-1})=x_{i-1}$.



Therefore
$$
U_{mathbf x}ge sum_{i=1}^n(x_i-x_{i-1})x_{i-1}
$$

Here to compute a bound, we can take any, easy to compute, subdivision. I take $x_i=a+frac{(b-a)i}{n}=a+ih$



begin{align}
sum_{i=1}^n(x_i-x_{i-1})x_{i-1}&=hsum_{i=1}^n(a+(i-1)h) \
&=frac{1}{2}h(2a+h(n-1))n \
&=frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})
end{align}

With
$$
lim_{ntoinfty}frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})=frac{1}{2}(b^2-a^2)
$$

Hence you have your result,




  • as $ntoinfty$, the upper bound is $U_xgefrac{1}{2}(b-a)^2$

  • as upper bound is greater that lower bound, the function is not Riemann integrable







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 1 '18 at 19:55

























answered Dec 1 '18 at 18:32









Picaud VincentPicaud Vincent

1,49439




1,49439












  • $begingroup$
    But how to prove that upper integral is equal to $(b*b - a*a)/2$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:42










  • $begingroup$
    it is upper bound when $n->infty$, as described in the answer, is it ok or not?
    $endgroup$
    – Picaud Vincent
    Dec 1 '18 at 18:55










  • $begingroup$
    but i want upper bound equal to $(b^2-a^2)/2$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:56










  • $begingroup$
    read question once again
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:56










  • $begingroup$
    i have to go right now, read it when back sorry. hold on
    $endgroup$
    – Picaud Vincent
    Dec 1 '18 at 18:56


















  • $begingroup$
    But how to prove that upper integral is equal to $(b*b - a*a)/2$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:42










  • $begingroup$
    it is upper bound when $n->infty$, as described in the answer, is it ok or not?
    $endgroup$
    – Picaud Vincent
    Dec 1 '18 at 18:55










  • $begingroup$
    but i want upper bound equal to $(b^2-a^2)/2$
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:56










  • $begingroup$
    read question once again
    $endgroup$
    – Bhowmick
    Dec 1 '18 at 18:56










  • $begingroup$
    i have to go right now, read it when back sorry. hold on
    $endgroup$
    – Picaud Vincent
    Dec 1 '18 at 18:56
















$begingroup$
But how to prove that upper integral is equal to $(b*b - a*a)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:42




$begingroup$
But how to prove that upper integral is equal to $(b*b - a*a)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:42












$begingroup$
it is upper bound when $n->infty$, as described in the answer, is it ok or not?
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:55




$begingroup$
it is upper bound when $n->infty$, as described in the answer, is it ok or not?
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:55












$begingroup$
but i want upper bound equal to $(b^2-a^2)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56




$begingroup$
but i want upper bound equal to $(b^2-a^2)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56












$begingroup$
read question once again
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56




$begingroup$
read question once again
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56












$begingroup$
i have to go right now, read it when back sorry. hold on
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:56




$begingroup$
i have to go right now, read it when back sorry. hold on
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:56


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021594%2fhow-to-find-the-upper-riemann-integral-of-following-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa