How to find the upper Riemann integral of following function?
$begingroup$
$f(x)$ is defined on $[a,b]$ as -
$= 0$ if $x ∈ [a, b] ∩ Q$
$= x$ otherwise
Lower integral is $0$ and i think that upper integral should be $(b^2 - a^2)/2$(i may be wrong also) but i am not able to prove it.
real-analysis integration riemann-integration
$endgroup$
add a comment |
$begingroup$
$f(x)$ is defined on $[a,b]$ as -
$= 0$ if $x ∈ [a, b] ∩ Q$
$= x$ otherwise
Lower integral is $0$ and i think that upper integral should be $(b^2 - a^2)/2$(i may be wrong also) but i am not able to prove it.
real-analysis integration riemann-integration
$endgroup$
$begingroup$
Bound it above by a step function.
$endgroup$
– Lord Shark the Unknown
Dec 1 '18 at 17:36
$begingroup$
@LordSharktheUnknown after solving that i get $<=$ inequality and not $=$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:14
add a comment |
$begingroup$
$f(x)$ is defined on $[a,b]$ as -
$= 0$ if $x ∈ [a, b] ∩ Q$
$= x$ otherwise
Lower integral is $0$ and i think that upper integral should be $(b^2 - a^2)/2$(i may be wrong also) but i am not able to prove it.
real-analysis integration riemann-integration
$endgroup$
$f(x)$ is defined on $[a,b]$ as -
$= 0$ if $x ∈ [a, b] ∩ Q$
$= x$ otherwise
Lower integral is $0$ and i think that upper integral should be $(b^2 - a^2)/2$(i may be wrong also) but i am not able to prove it.
real-analysis integration riemann-integration
real-analysis integration riemann-integration
asked Dec 1 '18 at 17:26
BhowmickBhowmick
1438
1438
$begingroup$
Bound it above by a step function.
$endgroup$
– Lord Shark the Unknown
Dec 1 '18 at 17:36
$begingroup$
@LordSharktheUnknown after solving that i get $<=$ inequality and not $=$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:14
add a comment |
$begingroup$
Bound it above by a step function.
$endgroup$
– Lord Shark the Unknown
Dec 1 '18 at 17:36
$begingroup$
@LordSharktheUnknown after solving that i get $<=$ inequality and not $=$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:14
$begingroup$
Bound it above by a step function.
$endgroup$
– Lord Shark the Unknown
Dec 1 '18 at 17:36
$begingroup$
Bound it above by a step function.
$endgroup$
– Lord Shark the Unknown
Dec 1 '18 at 17:36
$begingroup$
@LordSharktheUnknown after solving that i get $<=$ inequality and not $=$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:14
$begingroup$
@LordSharktheUnknown after solving that i get $<=$ inequality and not $=$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:14
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Since the irrationals are dense, we have $sup_{x in [x_{j-1},x_j]}f(x) = x_j$.
Hence, for any partition, $a = x_0 < x_1 < ldots < x_n = b$, the upper Darboux sum is
$$U(P,f) = sum_{j=1}^n x_j(x_j - x_{j-1}) = frac{1}{2} sum_{j=1}^n(x_j+x_{j-1})(x_j - x_{j-1}) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})(x_j - x_{j-1}) \ = frac{1}{2} sum_{j=1}^n(x_j^2 - x_{j-1}^2) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{b^2-a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2, $$
Since the last term on the RHS is nonnegative we have, for the upper integral,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) geqslant frac{b^2 - a^2}{2}$$
To prove we actually have $inf_{P}U(P,f) = frac{b^2 - a^2}{2}$, we show that for any $epsilon > 0$ there exists a partition such that
$$U(P,f) < frac{b^2 - a^2}{2} + epsilon$$
For a uniform partition where $x_j - x_{j-1} = frac{b-a}{n}$ for $j=1,2, ldots, n$ we have
$$frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{1}{2} nfrac{(b-a)^2}{n^2} = frac{(b-a)^2}{2n}$$
Now choose $n > frac{(b-a)^2}{2epsilon}$ and we have
$$begin{align}U(P,f) &=frac{b^2 - a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2\ &= frac{b^2 - a^2}{2}+ frac{(b-a)^2}{2n} \&< frac{b^2 - a^2}{2} + epsilonend{align}$$
Therefore,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) = frac{b^2 - a^2}{2}$$
$endgroup$
$begingroup$
We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
$endgroup$
– Paramanand Singh
Dec 2 '18 at 3:31
add a comment |
$begingroup$
For any partition $a=x_0<x_1<ldots <x_n=b$, the Riemann upper sum is
$$
U_{mathbf x}=sum_{i=1}^n(x_i-x_{i-1})sup_{x_{i-1}<x<x_i}f(x)
$$
In each interval $(x_{i-1},x_i)$ there is some real numbers $rin(x_{i-1},x_i)$ and hence the supremum is $sup_{x_{i-1}<x<x_i}f(x)ge f(x_{i-1})=x_{i-1}$.
Therefore
$$
U_{mathbf x}ge sum_{i=1}^n(x_i-x_{i-1})x_{i-1}
$$
Here to compute a bound, we can take any, easy to compute, subdivision. I take $x_i=a+frac{(b-a)i}{n}=a+ih$
begin{align}
sum_{i=1}^n(x_i-x_{i-1})x_{i-1}&=hsum_{i=1}^n(a+(i-1)h) \
&=frac{1}{2}h(2a+h(n-1))n \
&=frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})
end{align}
With
$$
lim_{ntoinfty}frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})=frac{1}{2}(b^2-a^2)
$$
Hence you have your result,
- as $ntoinfty$, the upper bound is $U_xgefrac{1}{2}(b-a)^2$
- as upper bound is greater that lower bound, the function is not Riemann integrable
$endgroup$
$begingroup$
But how to prove that upper integral is equal to $(b*b - a*a)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:42
$begingroup$
it is upper bound when $n->infty$, as described in the answer, is it ok or not?
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:55
$begingroup$
but i want upper bound equal to $(b^2-a^2)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
read question once again
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
i have to go right now, read it when back sorry. hold on
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:56
|
show 4 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021594%2fhow-to-find-the-upper-riemann-integral-of-following-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since the irrationals are dense, we have $sup_{x in [x_{j-1},x_j]}f(x) = x_j$.
Hence, for any partition, $a = x_0 < x_1 < ldots < x_n = b$, the upper Darboux sum is
$$U(P,f) = sum_{j=1}^n x_j(x_j - x_{j-1}) = frac{1}{2} sum_{j=1}^n(x_j+x_{j-1})(x_j - x_{j-1}) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})(x_j - x_{j-1}) \ = frac{1}{2} sum_{j=1}^n(x_j^2 - x_{j-1}^2) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{b^2-a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2, $$
Since the last term on the RHS is nonnegative we have, for the upper integral,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) geqslant frac{b^2 - a^2}{2}$$
To prove we actually have $inf_{P}U(P,f) = frac{b^2 - a^2}{2}$, we show that for any $epsilon > 0$ there exists a partition such that
$$U(P,f) < frac{b^2 - a^2}{2} + epsilon$$
For a uniform partition where $x_j - x_{j-1} = frac{b-a}{n}$ for $j=1,2, ldots, n$ we have
$$frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{1}{2} nfrac{(b-a)^2}{n^2} = frac{(b-a)^2}{2n}$$
Now choose $n > frac{(b-a)^2}{2epsilon}$ and we have
$$begin{align}U(P,f) &=frac{b^2 - a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2\ &= frac{b^2 - a^2}{2}+ frac{(b-a)^2}{2n} \&< frac{b^2 - a^2}{2} + epsilonend{align}$$
Therefore,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) = frac{b^2 - a^2}{2}$$
$endgroup$
$begingroup$
We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
$endgroup$
– Paramanand Singh
Dec 2 '18 at 3:31
add a comment |
$begingroup$
Since the irrationals are dense, we have $sup_{x in [x_{j-1},x_j]}f(x) = x_j$.
Hence, for any partition, $a = x_0 < x_1 < ldots < x_n = b$, the upper Darboux sum is
$$U(P,f) = sum_{j=1}^n x_j(x_j - x_{j-1}) = frac{1}{2} sum_{j=1}^n(x_j+x_{j-1})(x_j - x_{j-1}) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})(x_j - x_{j-1}) \ = frac{1}{2} sum_{j=1}^n(x_j^2 - x_{j-1}^2) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{b^2-a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2, $$
Since the last term on the RHS is nonnegative we have, for the upper integral,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) geqslant frac{b^2 - a^2}{2}$$
To prove we actually have $inf_{P}U(P,f) = frac{b^2 - a^2}{2}$, we show that for any $epsilon > 0$ there exists a partition such that
$$U(P,f) < frac{b^2 - a^2}{2} + epsilon$$
For a uniform partition where $x_j - x_{j-1} = frac{b-a}{n}$ for $j=1,2, ldots, n$ we have
$$frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{1}{2} nfrac{(b-a)^2}{n^2} = frac{(b-a)^2}{2n}$$
Now choose $n > frac{(b-a)^2}{2epsilon}$ and we have
$$begin{align}U(P,f) &=frac{b^2 - a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2\ &= frac{b^2 - a^2}{2}+ frac{(b-a)^2}{2n} \&< frac{b^2 - a^2}{2} + epsilonend{align}$$
Therefore,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) = frac{b^2 - a^2}{2}$$
$endgroup$
$begingroup$
We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
$endgroup$
– Paramanand Singh
Dec 2 '18 at 3:31
add a comment |
$begingroup$
Since the irrationals are dense, we have $sup_{x in [x_{j-1},x_j]}f(x) = x_j$.
Hence, for any partition, $a = x_0 < x_1 < ldots < x_n = b$, the upper Darboux sum is
$$U(P,f) = sum_{j=1}^n x_j(x_j - x_{j-1}) = frac{1}{2} sum_{j=1}^n(x_j+x_{j-1})(x_j - x_{j-1}) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})(x_j - x_{j-1}) \ = frac{1}{2} sum_{j=1}^n(x_j^2 - x_{j-1}^2) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{b^2-a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2, $$
Since the last term on the RHS is nonnegative we have, for the upper integral,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) geqslant frac{b^2 - a^2}{2}$$
To prove we actually have $inf_{P}U(P,f) = frac{b^2 - a^2}{2}$, we show that for any $epsilon > 0$ there exists a partition such that
$$U(P,f) < frac{b^2 - a^2}{2} + epsilon$$
For a uniform partition where $x_j - x_{j-1} = frac{b-a}{n}$ for $j=1,2, ldots, n$ we have
$$frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{1}{2} nfrac{(b-a)^2}{n^2} = frac{(b-a)^2}{2n}$$
Now choose $n > frac{(b-a)^2}{2epsilon}$ and we have
$$begin{align}U(P,f) &=frac{b^2 - a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2\ &= frac{b^2 - a^2}{2}+ frac{(b-a)^2}{2n} \&< frac{b^2 - a^2}{2} + epsilonend{align}$$
Therefore,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) = frac{b^2 - a^2}{2}$$
$endgroup$
Since the irrationals are dense, we have $sup_{x in [x_{j-1},x_j]}f(x) = x_j$.
Hence, for any partition, $a = x_0 < x_1 < ldots < x_n = b$, the upper Darboux sum is
$$U(P,f) = sum_{j=1}^n x_j(x_j - x_{j-1}) = frac{1}{2} sum_{j=1}^n(x_j+x_{j-1})(x_j - x_{j-1}) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})(x_j - x_{j-1}) \ = frac{1}{2} sum_{j=1}^n(x_j^2 - x_{j-1}^2) + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{b^2-a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2, $$
Since the last term on the RHS is nonnegative we have, for the upper integral,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) geqslant frac{b^2 - a^2}{2}$$
To prove we actually have $inf_{P}U(P,f) = frac{b^2 - a^2}{2}$, we show that for any $epsilon > 0$ there exists a partition such that
$$U(P,f) < frac{b^2 - a^2}{2} + epsilon$$
For a uniform partition where $x_j - x_{j-1} = frac{b-a}{n}$ for $j=1,2, ldots, n$ we have
$$frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2 = frac{1}{2} nfrac{(b-a)^2}{n^2} = frac{(b-a)^2}{2n}$$
Now choose $n > frac{(b-a)^2}{2epsilon}$ and we have
$$begin{align}U(P,f) &=frac{b^2 - a^2}{2} + frac{1}{2}sum_{j=1}^n(x_j-x_{j-1})^2\ &= frac{b^2 - a^2}{2}+ frac{(b-a)^2}{2n} \&< frac{b^2 - a^2}{2} + epsilonend{align}$$
Therefore,
$$overline{int_a^b} f(x) , dx = inf_{P}U(P,f) = frac{b^2 - a^2}{2}$$
edited Dec 2 '18 at 3:36
answered Dec 1 '18 at 20:01
RRLRRL
50k42573
50k42573
$begingroup$
We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
$endgroup$
– Paramanand Singh
Dec 2 '18 at 3:31
add a comment |
$begingroup$
We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
$endgroup$
– Paramanand Singh
Dec 2 '18 at 3:31
$begingroup$
We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
$endgroup$
– Paramanand Singh
Dec 2 '18 at 3:31
$begingroup$
We can use the theorem that if $P_n$ is a sequence of partitions such that norm/mesh of $P_n$ tends to $0$ then $U(P_n, f) to overline{int_{a} ^{b} }f(x) , dx$ and then take $P_n$ as uniform partition. +1 as your answer proves this theorem for the given function.
$endgroup$
– Paramanand Singh
Dec 2 '18 at 3:31
add a comment |
$begingroup$
For any partition $a=x_0<x_1<ldots <x_n=b$, the Riemann upper sum is
$$
U_{mathbf x}=sum_{i=1}^n(x_i-x_{i-1})sup_{x_{i-1}<x<x_i}f(x)
$$
In each interval $(x_{i-1},x_i)$ there is some real numbers $rin(x_{i-1},x_i)$ and hence the supremum is $sup_{x_{i-1}<x<x_i}f(x)ge f(x_{i-1})=x_{i-1}$.
Therefore
$$
U_{mathbf x}ge sum_{i=1}^n(x_i-x_{i-1})x_{i-1}
$$
Here to compute a bound, we can take any, easy to compute, subdivision. I take $x_i=a+frac{(b-a)i}{n}=a+ih$
begin{align}
sum_{i=1}^n(x_i-x_{i-1})x_{i-1}&=hsum_{i=1}^n(a+(i-1)h) \
&=frac{1}{2}h(2a+h(n-1))n \
&=frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})
end{align}
With
$$
lim_{ntoinfty}frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})=frac{1}{2}(b^2-a^2)
$$
Hence you have your result,
- as $ntoinfty$, the upper bound is $U_xgefrac{1}{2}(b-a)^2$
- as upper bound is greater that lower bound, the function is not Riemann integrable
$endgroup$
$begingroup$
But how to prove that upper integral is equal to $(b*b - a*a)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:42
$begingroup$
it is upper bound when $n->infty$, as described in the answer, is it ok or not?
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:55
$begingroup$
but i want upper bound equal to $(b^2-a^2)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
read question once again
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
i have to go right now, read it when back sorry. hold on
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:56
|
show 4 more comments
$begingroup$
For any partition $a=x_0<x_1<ldots <x_n=b$, the Riemann upper sum is
$$
U_{mathbf x}=sum_{i=1}^n(x_i-x_{i-1})sup_{x_{i-1}<x<x_i}f(x)
$$
In each interval $(x_{i-1},x_i)$ there is some real numbers $rin(x_{i-1},x_i)$ and hence the supremum is $sup_{x_{i-1}<x<x_i}f(x)ge f(x_{i-1})=x_{i-1}$.
Therefore
$$
U_{mathbf x}ge sum_{i=1}^n(x_i-x_{i-1})x_{i-1}
$$
Here to compute a bound, we can take any, easy to compute, subdivision. I take $x_i=a+frac{(b-a)i}{n}=a+ih$
begin{align}
sum_{i=1}^n(x_i-x_{i-1})x_{i-1}&=hsum_{i=1}^n(a+(i-1)h) \
&=frac{1}{2}h(2a+h(n-1))n \
&=frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})
end{align}
With
$$
lim_{ntoinfty}frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})=frac{1}{2}(b^2-a^2)
$$
Hence you have your result,
- as $ntoinfty$, the upper bound is $U_xgefrac{1}{2}(b-a)^2$
- as upper bound is greater that lower bound, the function is not Riemann integrable
$endgroup$
$begingroup$
But how to prove that upper integral is equal to $(b*b - a*a)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:42
$begingroup$
it is upper bound when $n->infty$, as described in the answer, is it ok or not?
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:55
$begingroup$
but i want upper bound equal to $(b^2-a^2)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
read question once again
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
i have to go right now, read it when back sorry. hold on
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:56
|
show 4 more comments
$begingroup$
For any partition $a=x_0<x_1<ldots <x_n=b$, the Riemann upper sum is
$$
U_{mathbf x}=sum_{i=1}^n(x_i-x_{i-1})sup_{x_{i-1}<x<x_i}f(x)
$$
In each interval $(x_{i-1},x_i)$ there is some real numbers $rin(x_{i-1},x_i)$ and hence the supremum is $sup_{x_{i-1}<x<x_i}f(x)ge f(x_{i-1})=x_{i-1}$.
Therefore
$$
U_{mathbf x}ge sum_{i=1}^n(x_i-x_{i-1})x_{i-1}
$$
Here to compute a bound, we can take any, easy to compute, subdivision. I take $x_i=a+frac{(b-a)i}{n}=a+ih$
begin{align}
sum_{i=1}^n(x_i-x_{i-1})x_{i-1}&=hsum_{i=1}^n(a+(i-1)h) \
&=frac{1}{2}h(2a+h(n-1))n \
&=frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})
end{align}
With
$$
lim_{ntoinfty}frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})=frac{1}{2}(b^2-a^2)
$$
Hence you have your result,
- as $ntoinfty$, the upper bound is $U_xgefrac{1}{2}(b-a)^2$
- as upper bound is greater that lower bound, the function is not Riemann integrable
$endgroup$
For any partition $a=x_0<x_1<ldots <x_n=b$, the Riemann upper sum is
$$
U_{mathbf x}=sum_{i=1}^n(x_i-x_{i-1})sup_{x_{i-1}<x<x_i}f(x)
$$
In each interval $(x_{i-1},x_i)$ there is some real numbers $rin(x_{i-1},x_i)$ and hence the supremum is $sup_{x_{i-1}<x<x_i}f(x)ge f(x_{i-1})=x_{i-1}$.
Therefore
$$
U_{mathbf x}ge sum_{i=1}^n(x_i-x_{i-1})x_{i-1}
$$
Here to compute a bound, we can take any, easy to compute, subdivision. I take $x_i=a+frac{(b-a)i}{n}=a+ih$
begin{align}
sum_{i=1}^n(x_i-x_{i-1})x_{i-1}&=hsum_{i=1}^n(a+(i-1)h) \
&=frac{1}{2}h(2a+h(n-1))n \
&=frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})
end{align}
With
$$
lim_{ntoinfty}frac{1}{2}(b-a)(2a+frac{(b-a)(n-1)}{n})=frac{1}{2}(b^2-a^2)
$$
Hence you have your result,
- as $ntoinfty$, the upper bound is $U_xgefrac{1}{2}(b-a)^2$
- as upper bound is greater that lower bound, the function is not Riemann integrable
edited Dec 1 '18 at 19:55
answered Dec 1 '18 at 18:32
Picaud VincentPicaud Vincent
1,49439
1,49439
$begingroup$
But how to prove that upper integral is equal to $(b*b - a*a)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:42
$begingroup$
it is upper bound when $n->infty$, as described in the answer, is it ok or not?
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:55
$begingroup$
but i want upper bound equal to $(b^2-a^2)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
read question once again
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
i have to go right now, read it when back sorry. hold on
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:56
|
show 4 more comments
$begingroup$
But how to prove that upper integral is equal to $(b*b - a*a)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:42
$begingroup$
it is upper bound when $n->infty$, as described in the answer, is it ok or not?
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:55
$begingroup$
but i want upper bound equal to $(b^2-a^2)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
read question once again
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
i have to go right now, read it when back sorry. hold on
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:56
$begingroup$
But how to prove that upper integral is equal to $(b*b - a*a)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:42
$begingroup$
But how to prove that upper integral is equal to $(b*b - a*a)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:42
$begingroup$
it is upper bound when $n->infty$, as described in the answer, is it ok or not?
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:55
$begingroup$
it is upper bound when $n->infty$, as described in the answer, is it ok or not?
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:55
$begingroup$
but i want upper bound equal to $(b^2-a^2)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
but i want upper bound equal to $(b^2-a^2)/2$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
read question once again
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
read question once again
$endgroup$
– Bhowmick
Dec 1 '18 at 18:56
$begingroup$
i have to go right now, read it when back sorry. hold on
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:56
$begingroup$
i have to go right now, read it when back sorry. hold on
$endgroup$
– Picaud Vincent
Dec 1 '18 at 18:56
|
show 4 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021594%2fhow-to-find-the-upper-riemann-integral-of-following-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Bound it above by a step function.
$endgroup$
– Lord Shark the Unknown
Dec 1 '18 at 17:36
$begingroup$
@LordSharktheUnknown after solving that i get $<=$ inequality and not $=$
$endgroup$
– Bhowmick
Dec 1 '18 at 18:14