How to show that all the zeros of complex function are on unit circle.
$begingroup$
Prove that if $be^{a+1}<1$ where $a$ and $b$ are positive and real, then the function $$z^ne^{-a}-be^z$$ has $n$ zeroes in the unit circle.
I have no idea how to start this problem?
complex-analysis exponential-function roots
$endgroup$
add a comment |
$begingroup$
Prove that if $be^{a+1}<1$ where $a$ and $b$ are positive and real, then the function $$z^ne^{-a}-be^z$$ has $n$ zeroes in the unit circle.
I have no idea how to start this problem?
complex-analysis exponential-function roots
$endgroup$
add a comment |
$begingroup$
Prove that if $be^{a+1}<1$ where $a$ and $b$ are positive and real, then the function $$z^ne^{-a}-be^z$$ has $n$ zeroes in the unit circle.
I have no idea how to start this problem?
complex-analysis exponential-function roots
$endgroup$
Prove that if $be^{a+1}<1$ where $a$ and $b$ are positive and real, then the function $$z^ne^{-a}-be^z$$ has $n$ zeroes in the unit circle.
I have no idea how to start this problem?
complex-analysis exponential-function roots
complex-analysis exponential-function roots
asked Dec 1 '18 at 17:10
Mittal GMittal G
1,203516
1,203516
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $h(z)=z^ne^{-a}-b,e^z$ and $f(z)=z^ne^{-a}$. Then, if $|z|=1$ we have
$$
|f(z)-h(z)|=b|e^z|le e,ble e^{-a}=|f(z)|.
$$
By Rouche's Theorem, $f$ and $h$ have the same number of zeros in ${|z|<1}$.
$endgroup$
add a comment |
$begingroup$
Use Rouches theorem
Consider $f(z)=z^ne^{-a}$ and $g(z)=-be^z{}$
On unit circle
$|f(z)|<|g(z)|$
By given condition
$be<e^{-a}$.
So Same number of zero
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021576%2fhow-to-show-that-all-the-zeros-of-complex-function-are-on-unit-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $h(z)=z^ne^{-a}-b,e^z$ and $f(z)=z^ne^{-a}$. Then, if $|z|=1$ we have
$$
|f(z)-h(z)|=b|e^z|le e,ble e^{-a}=|f(z)|.
$$
By Rouche's Theorem, $f$ and $h$ have the same number of zeros in ${|z|<1}$.
$endgroup$
add a comment |
$begingroup$
Let $h(z)=z^ne^{-a}-b,e^z$ and $f(z)=z^ne^{-a}$. Then, if $|z|=1$ we have
$$
|f(z)-h(z)|=b|e^z|le e,ble e^{-a}=|f(z)|.
$$
By Rouche's Theorem, $f$ and $h$ have the same number of zeros in ${|z|<1}$.
$endgroup$
add a comment |
$begingroup$
Let $h(z)=z^ne^{-a}-b,e^z$ and $f(z)=z^ne^{-a}$. Then, if $|z|=1$ we have
$$
|f(z)-h(z)|=b|e^z|le e,ble e^{-a}=|f(z)|.
$$
By Rouche's Theorem, $f$ and $h$ have the same number of zeros in ${|z|<1}$.
$endgroup$
Let $h(z)=z^ne^{-a}-b,e^z$ and $f(z)=z^ne^{-a}$. Then, if $|z|=1$ we have
$$
|f(z)-h(z)|=b|e^z|le e,ble e^{-a}=|f(z)|.
$$
By Rouche's Theorem, $f$ and $h$ have the same number of zeros in ${|z|<1}$.
answered Dec 1 '18 at 18:05
Julián AguirreJulián Aguirre
68.1k24094
68.1k24094
add a comment |
add a comment |
$begingroup$
Use Rouches theorem
Consider $f(z)=z^ne^{-a}$ and $g(z)=-be^z{}$
On unit circle
$|f(z)|<|g(z)|$
By given condition
$be<e^{-a}$.
So Same number of zero
$endgroup$
add a comment |
$begingroup$
Use Rouches theorem
Consider $f(z)=z^ne^{-a}$ and $g(z)=-be^z{}$
On unit circle
$|f(z)|<|g(z)|$
By given condition
$be<e^{-a}$.
So Same number of zero
$endgroup$
add a comment |
$begingroup$
Use Rouches theorem
Consider $f(z)=z^ne^{-a}$ and $g(z)=-be^z{}$
On unit circle
$|f(z)|<|g(z)|$
By given condition
$be<e^{-a}$.
So Same number of zero
$endgroup$
Use Rouches theorem
Consider $f(z)=z^ne^{-a}$ and $g(z)=-be^z{}$
On unit circle
$|f(z)|<|g(z)|$
By given condition
$be<e^{-a}$.
So Same number of zero
answered Dec 1 '18 at 18:08
SRJSRJ
1,6121520
1,6121520
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021576%2fhow-to-show-that-all-the-zeros-of-complex-function-are-on-unit-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown