How to normalize Dirichlet distribution?
$begingroup$
The Dirichlet distribution is defined as:
$$
p(vec{mu}_M|vec{alpha}_M) = c(vec{alpha}_M) Pi_{k=1}^Mmu_k^{alpha_k-1}
$$
where $vec{mu}_M, vec{alpha}_M$ is a vector of length $M$ and $sum_{k=1}^Mmu_k=1$.
I want to show that:
$$
c(vec{alpha}_M)=frac{Gamma(alpha_1+alpha_2+cdots+alpha_M)}{Gamma(alpha_1)Gamma(alpha_2)cdotsGamma(alpha_M)}
$$
Prove by induction:
when $M=2$, the distribution is the same as Beta distribution, the relation holds.
Suppose it holds $M=N-1$, when $M=N$:
begin{align}
1=&int p(vec{mu}_N|vec{alpha}_N) \
=& vec{c}(vec{alpha}_N) int mathrm{d}vec{mu}_N Pi_{k=1}^Nmu_k^{alpha_k-1} \
=& vec{c}(vec{alpha}_N) int_{0}^{1} mathrm{d}mu_N mu_N^{alpha_N-1}int mathrm{d}vec{mu}_{N-1}Pi_{k=1}^{N-1}mu_k^{alpha_k-1}
end{align}
For $sum_{k=1}^{N-1}mu_k = 1-mu_N$, if we change the variable $u_k=mu_k/(1-mu_N)$, then $sum_{k=1}^{N-1}u_k = 1$.
Consider:
begin{align}
&int mathrm{d}vec{mu}_{N-1}Pi_{k=1}^{N-1}mu_k^{alpha_k-1} \
=&(1-mu_N)^{sum_{k=1}^{k=N-1}alpha_k} int mathrm{d}vec{u}_{N-1}Pi_{k=1}^{N-1}u_k^{alpha_k-1} \
=&(1-mu_N)^{sum_{k=1}^{k=N-1}alpha_k} frac{1}{c(vec{alpha}_{N-1})}
end{align}
where I have used the assumption holds when $M=N-1$.
Therefore:
begin{align}
1=frac{c(vec{alpha}_{N})}{c(vec{alpha}_{N-1})} int_{0}^{1} mathrm{d}mu_N mu_N^{alpha_N-1} (1-mu_N)^{sum_{k=1}^{k=N-1}alpha_k}
end{align}
It seems that I am very close to the desired result but missed a factor of $1/(1-mu_N)$ in the final integrand, how to fix this?
probability integration proof-verification probability-distributions induction
$endgroup$
add a comment |
$begingroup$
The Dirichlet distribution is defined as:
$$
p(vec{mu}_M|vec{alpha}_M) = c(vec{alpha}_M) Pi_{k=1}^Mmu_k^{alpha_k-1}
$$
where $vec{mu}_M, vec{alpha}_M$ is a vector of length $M$ and $sum_{k=1}^Mmu_k=1$.
I want to show that:
$$
c(vec{alpha}_M)=frac{Gamma(alpha_1+alpha_2+cdots+alpha_M)}{Gamma(alpha_1)Gamma(alpha_2)cdotsGamma(alpha_M)}
$$
Prove by induction:
when $M=2$, the distribution is the same as Beta distribution, the relation holds.
Suppose it holds $M=N-1$, when $M=N$:
begin{align}
1=&int p(vec{mu}_N|vec{alpha}_N) \
=& vec{c}(vec{alpha}_N) int mathrm{d}vec{mu}_N Pi_{k=1}^Nmu_k^{alpha_k-1} \
=& vec{c}(vec{alpha}_N) int_{0}^{1} mathrm{d}mu_N mu_N^{alpha_N-1}int mathrm{d}vec{mu}_{N-1}Pi_{k=1}^{N-1}mu_k^{alpha_k-1}
end{align}
For $sum_{k=1}^{N-1}mu_k = 1-mu_N$, if we change the variable $u_k=mu_k/(1-mu_N)$, then $sum_{k=1}^{N-1}u_k = 1$.
Consider:
begin{align}
&int mathrm{d}vec{mu}_{N-1}Pi_{k=1}^{N-1}mu_k^{alpha_k-1} \
=&(1-mu_N)^{sum_{k=1}^{k=N-1}alpha_k} int mathrm{d}vec{u}_{N-1}Pi_{k=1}^{N-1}u_k^{alpha_k-1} \
=&(1-mu_N)^{sum_{k=1}^{k=N-1}alpha_k} frac{1}{c(vec{alpha}_{N-1})}
end{align}
where I have used the assumption holds when $M=N-1$.
Therefore:
begin{align}
1=frac{c(vec{alpha}_{N})}{c(vec{alpha}_{N-1})} int_{0}^{1} mathrm{d}mu_N mu_N^{alpha_N-1} (1-mu_N)^{sum_{k=1}^{k=N-1}alpha_k}
end{align}
It seems that I am very close to the desired result but missed a factor of $1/(1-mu_N)$ in the final integrand, how to fix this?
probability integration proof-verification probability-distributions induction
$endgroup$
$begingroup$
Answered here : math.stackexchange.com/q/207073/321264.
$endgroup$
– StubbornAtom
Dec 2 '18 at 22:12
$begingroup$
@StubbornAtom What's wrong with my derivation?
$endgroup$
– buzhidao
Dec 3 '18 at 1:57
add a comment |
$begingroup$
The Dirichlet distribution is defined as:
$$
p(vec{mu}_M|vec{alpha}_M) = c(vec{alpha}_M) Pi_{k=1}^Mmu_k^{alpha_k-1}
$$
where $vec{mu}_M, vec{alpha}_M$ is a vector of length $M$ and $sum_{k=1}^Mmu_k=1$.
I want to show that:
$$
c(vec{alpha}_M)=frac{Gamma(alpha_1+alpha_2+cdots+alpha_M)}{Gamma(alpha_1)Gamma(alpha_2)cdotsGamma(alpha_M)}
$$
Prove by induction:
when $M=2$, the distribution is the same as Beta distribution, the relation holds.
Suppose it holds $M=N-1$, when $M=N$:
begin{align}
1=&int p(vec{mu}_N|vec{alpha}_N) \
=& vec{c}(vec{alpha}_N) int mathrm{d}vec{mu}_N Pi_{k=1}^Nmu_k^{alpha_k-1} \
=& vec{c}(vec{alpha}_N) int_{0}^{1} mathrm{d}mu_N mu_N^{alpha_N-1}int mathrm{d}vec{mu}_{N-1}Pi_{k=1}^{N-1}mu_k^{alpha_k-1}
end{align}
For $sum_{k=1}^{N-1}mu_k = 1-mu_N$, if we change the variable $u_k=mu_k/(1-mu_N)$, then $sum_{k=1}^{N-1}u_k = 1$.
Consider:
begin{align}
&int mathrm{d}vec{mu}_{N-1}Pi_{k=1}^{N-1}mu_k^{alpha_k-1} \
=&(1-mu_N)^{sum_{k=1}^{k=N-1}alpha_k} int mathrm{d}vec{u}_{N-1}Pi_{k=1}^{N-1}u_k^{alpha_k-1} \
=&(1-mu_N)^{sum_{k=1}^{k=N-1}alpha_k} frac{1}{c(vec{alpha}_{N-1})}
end{align}
where I have used the assumption holds when $M=N-1$.
Therefore:
begin{align}
1=frac{c(vec{alpha}_{N})}{c(vec{alpha}_{N-1})} int_{0}^{1} mathrm{d}mu_N mu_N^{alpha_N-1} (1-mu_N)^{sum_{k=1}^{k=N-1}alpha_k}
end{align}
It seems that I am very close to the desired result but missed a factor of $1/(1-mu_N)$ in the final integrand, how to fix this?
probability integration proof-verification probability-distributions induction
$endgroup$
The Dirichlet distribution is defined as:
$$
p(vec{mu}_M|vec{alpha}_M) = c(vec{alpha}_M) Pi_{k=1}^Mmu_k^{alpha_k-1}
$$
where $vec{mu}_M, vec{alpha}_M$ is a vector of length $M$ and $sum_{k=1}^Mmu_k=1$.
I want to show that:
$$
c(vec{alpha}_M)=frac{Gamma(alpha_1+alpha_2+cdots+alpha_M)}{Gamma(alpha_1)Gamma(alpha_2)cdotsGamma(alpha_M)}
$$
Prove by induction:
when $M=2$, the distribution is the same as Beta distribution, the relation holds.
Suppose it holds $M=N-1$, when $M=N$:
begin{align}
1=&int p(vec{mu}_N|vec{alpha}_N) \
=& vec{c}(vec{alpha}_N) int mathrm{d}vec{mu}_N Pi_{k=1}^Nmu_k^{alpha_k-1} \
=& vec{c}(vec{alpha}_N) int_{0}^{1} mathrm{d}mu_N mu_N^{alpha_N-1}int mathrm{d}vec{mu}_{N-1}Pi_{k=1}^{N-1}mu_k^{alpha_k-1}
end{align}
For $sum_{k=1}^{N-1}mu_k = 1-mu_N$, if we change the variable $u_k=mu_k/(1-mu_N)$, then $sum_{k=1}^{N-1}u_k = 1$.
Consider:
begin{align}
&int mathrm{d}vec{mu}_{N-1}Pi_{k=1}^{N-1}mu_k^{alpha_k-1} \
=&(1-mu_N)^{sum_{k=1}^{k=N-1}alpha_k} int mathrm{d}vec{u}_{N-1}Pi_{k=1}^{N-1}u_k^{alpha_k-1} \
=&(1-mu_N)^{sum_{k=1}^{k=N-1}alpha_k} frac{1}{c(vec{alpha}_{N-1})}
end{align}
where I have used the assumption holds when $M=N-1$.
Therefore:
begin{align}
1=frac{c(vec{alpha}_{N})}{c(vec{alpha}_{N-1})} int_{0}^{1} mathrm{d}mu_N mu_N^{alpha_N-1} (1-mu_N)^{sum_{k=1}^{k=N-1}alpha_k}
end{align}
It seems that I am very close to the desired result but missed a factor of $1/(1-mu_N)$ in the final integrand, how to fix this?
probability integration proof-verification probability-distributions induction
probability integration proof-verification probability-distributions induction
asked Dec 1 '18 at 16:15
buzhidaobuzhidao
319115
319115
$begingroup$
Answered here : math.stackexchange.com/q/207073/321264.
$endgroup$
– StubbornAtom
Dec 2 '18 at 22:12
$begingroup$
@StubbornAtom What's wrong with my derivation?
$endgroup$
– buzhidao
Dec 3 '18 at 1:57
add a comment |
$begingroup$
Answered here : math.stackexchange.com/q/207073/321264.
$endgroup$
– StubbornAtom
Dec 2 '18 at 22:12
$begingroup$
@StubbornAtom What's wrong with my derivation?
$endgroup$
– buzhidao
Dec 3 '18 at 1:57
$begingroup$
Answered here : math.stackexchange.com/q/207073/321264.
$endgroup$
– StubbornAtom
Dec 2 '18 at 22:12
$begingroup$
Answered here : math.stackexchange.com/q/207073/321264.
$endgroup$
– StubbornAtom
Dec 2 '18 at 22:12
$begingroup$
@StubbornAtom What's wrong with my derivation?
$endgroup$
– buzhidao
Dec 3 '18 at 1:57
$begingroup$
@StubbornAtom What's wrong with my derivation?
$endgroup$
– buzhidao
Dec 3 '18 at 1:57
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021519%2fhow-to-normalize-dirichlet-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021519%2fhow-to-normalize-dirichlet-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Answered here : math.stackexchange.com/q/207073/321264.
$endgroup$
– StubbornAtom
Dec 2 '18 at 22:12
$begingroup$
@StubbornAtom What's wrong with my derivation?
$endgroup$
– buzhidao
Dec 3 '18 at 1:57