Show that $lim_{ntoinfty}frac{log_an}{n} = 0$ for $0<a<1$
$begingroup$
Let $0<a<1$, prove that:
$$
lim_{ntoinfty}frac{log_an}{n} = 0
$$
I've started with proving a simpler case for $a>1$. Choose some $varepsilon >0$ such that:
$$
frac{log_an}{n} < varepsilon iff log_an < nvarepsilon iff n<a^{nvarepsilon}
$$
We know that for $a>1$ and $kin mathbb N$:
$$
lim_{ntoinfty}frac{n^k}{a^n}=0
$$
Using that fact we may show that:
$$
exists N in mathbb N:forall n ge N => frac{n}{(a^varepsilon)^n} < 1
$$
Since the above yields a true statement starting from $n ge N$ we may conclude that initial assumption is also true and hence:
$$
lim_{ntoinfty} frac{log_an}{n} = 0
$$
Now consider the case for $0<a<1$:
$$
left|frac{log_an}{n}right| < varepsilon
$$
And this is where I got stuck, since $0 < a < 1$ the value of logarithm is negative and I'm not sure how to proceed. What are the next steps?
Also one of my thoughts was to present $a$ as:
$$
a = frac{1}{1+r} , r in mathbb R
$$
and then try to use Bernoulli's, but that didn't yield anything I could use.
Please note that i'm free to use anything before the definition of a derivative.
Update
Based on the hint by MathLover I think this is how I can proceed. Use the fact that:
$$
log_ax = - log_{1/a}x
$$
Hence:
$$
log_{1/a}n < nvarepsilon
$$
Define $b = {1 over a} > 1$, so:
$$
n < frac{1}{a^{nvarepsilon}} = b^{nvarepsilon}
$$
Now based on the reasoning for case when $a > 1$ we may as well conclude that:
$$
exists Nin mathbb N : forall n ge N implies frac{n}{b^{nvarepsilon}} < 1
$$
Thus:
$$
begin{cases}
lim_{ntoinfty}frac{log_an}{n} = 0 \
ain (0, 1) bigcup (1, +infty)
end{cases}
$$
calculus limits logarithms limits-without-lhopital epsilon-delta
$endgroup$
add a comment |
$begingroup$
Let $0<a<1$, prove that:
$$
lim_{ntoinfty}frac{log_an}{n} = 0
$$
I've started with proving a simpler case for $a>1$. Choose some $varepsilon >0$ such that:
$$
frac{log_an}{n} < varepsilon iff log_an < nvarepsilon iff n<a^{nvarepsilon}
$$
We know that for $a>1$ and $kin mathbb N$:
$$
lim_{ntoinfty}frac{n^k}{a^n}=0
$$
Using that fact we may show that:
$$
exists N in mathbb N:forall n ge N => frac{n}{(a^varepsilon)^n} < 1
$$
Since the above yields a true statement starting from $n ge N$ we may conclude that initial assumption is also true and hence:
$$
lim_{ntoinfty} frac{log_an}{n} = 0
$$
Now consider the case for $0<a<1$:
$$
left|frac{log_an}{n}right| < varepsilon
$$
And this is where I got stuck, since $0 < a < 1$ the value of logarithm is negative and I'm not sure how to proceed. What are the next steps?
Also one of my thoughts was to present $a$ as:
$$
a = frac{1}{1+r} , r in mathbb R
$$
and then try to use Bernoulli's, but that didn't yield anything I could use.
Please note that i'm free to use anything before the definition of a derivative.
Update
Based on the hint by MathLover I think this is how I can proceed. Use the fact that:
$$
log_ax = - log_{1/a}x
$$
Hence:
$$
log_{1/a}n < nvarepsilon
$$
Define $b = {1 over a} > 1$, so:
$$
n < frac{1}{a^{nvarepsilon}} = b^{nvarepsilon}
$$
Now based on the reasoning for case when $a > 1$ we may as well conclude that:
$$
exists Nin mathbb N : forall n ge N implies frac{n}{b^{nvarepsilon}} < 1
$$
Thus:
$$
begin{cases}
lim_{ntoinfty}frac{log_an}{n} = 0 \
ain (0, 1) bigcup (1, +infty)
end{cases}
$$
calculus limits logarithms limits-without-lhopital epsilon-delta
$endgroup$
add a comment |
$begingroup$
Let $0<a<1$, prove that:
$$
lim_{ntoinfty}frac{log_an}{n} = 0
$$
I've started with proving a simpler case for $a>1$. Choose some $varepsilon >0$ such that:
$$
frac{log_an}{n} < varepsilon iff log_an < nvarepsilon iff n<a^{nvarepsilon}
$$
We know that for $a>1$ and $kin mathbb N$:
$$
lim_{ntoinfty}frac{n^k}{a^n}=0
$$
Using that fact we may show that:
$$
exists N in mathbb N:forall n ge N => frac{n}{(a^varepsilon)^n} < 1
$$
Since the above yields a true statement starting from $n ge N$ we may conclude that initial assumption is also true and hence:
$$
lim_{ntoinfty} frac{log_an}{n} = 0
$$
Now consider the case for $0<a<1$:
$$
left|frac{log_an}{n}right| < varepsilon
$$
And this is where I got stuck, since $0 < a < 1$ the value of logarithm is negative and I'm not sure how to proceed. What are the next steps?
Also one of my thoughts was to present $a$ as:
$$
a = frac{1}{1+r} , r in mathbb R
$$
and then try to use Bernoulli's, but that didn't yield anything I could use.
Please note that i'm free to use anything before the definition of a derivative.
Update
Based on the hint by MathLover I think this is how I can proceed. Use the fact that:
$$
log_ax = - log_{1/a}x
$$
Hence:
$$
log_{1/a}n < nvarepsilon
$$
Define $b = {1 over a} > 1$, so:
$$
n < frac{1}{a^{nvarepsilon}} = b^{nvarepsilon}
$$
Now based on the reasoning for case when $a > 1$ we may as well conclude that:
$$
exists Nin mathbb N : forall n ge N implies frac{n}{b^{nvarepsilon}} < 1
$$
Thus:
$$
begin{cases}
lim_{ntoinfty}frac{log_an}{n} = 0 \
ain (0, 1) bigcup (1, +infty)
end{cases}
$$
calculus limits logarithms limits-without-lhopital epsilon-delta
$endgroup$
Let $0<a<1$, prove that:
$$
lim_{ntoinfty}frac{log_an}{n} = 0
$$
I've started with proving a simpler case for $a>1$. Choose some $varepsilon >0$ such that:
$$
frac{log_an}{n} < varepsilon iff log_an < nvarepsilon iff n<a^{nvarepsilon}
$$
We know that for $a>1$ and $kin mathbb N$:
$$
lim_{ntoinfty}frac{n^k}{a^n}=0
$$
Using that fact we may show that:
$$
exists N in mathbb N:forall n ge N => frac{n}{(a^varepsilon)^n} < 1
$$
Since the above yields a true statement starting from $n ge N$ we may conclude that initial assumption is also true and hence:
$$
lim_{ntoinfty} frac{log_an}{n} = 0
$$
Now consider the case for $0<a<1$:
$$
left|frac{log_an}{n}right| < varepsilon
$$
And this is where I got stuck, since $0 < a < 1$ the value of logarithm is negative and I'm not sure how to proceed. What are the next steps?
Also one of my thoughts was to present $a$ as:
$$
a = frac{1}{1+r} , r in mathbb R
$$
and then try to use Bernoulli's, but that didn't yield anything I could use.
Please note that i'm free to use anything before the definition of a derivative.
Update
Based on the hint by MathLover I think this is how I can proceed. Use the fact that:
$$
log_ax = - log_{1/a}x
$$
Hence:
$$
log_{1/a}n < nvarepsilon
$$
Define $b = {1 over a} > 1$, so:
$$
n < frac{1}{a^{nvarepsilon}} = b^{nvarepsilon}
$$
Now based on the reasoning for case when $a > 1$ we may as well conclude that:
$$
exists Nin mathbb N : forall n ge N implies frac{n}{b^{nvarepsilon}} < 1
$$
Thus:
$$
begin{cases}
lim_{ntoinfty}frac{log_an}{n} = 0 \
ain (0, 1) bigcup (1, +infty)
end{cases}
$$
calculus limits logarithms limits-without-lhopital epsilon-delta
calculus limits logarithms limits-without-lhopital epsilon-delta
edited Dec 4 '18 at 17:39
roman
asked Dec 4 '18 at 17:07
romanroman
2,17321224
2,17321224
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
We know that for arbitrary function $f$, $$lim_{ntoinfty}f(n)=0Longleftrightarrowlim_{ntoinfty}a^{f(n)}=1$$
So, if $f(n) = frac{log_a(n)}n$, then $$lim_{ntoinfty}frac{log_a(n)}n=0Longleftrightarrowlim_{ntoinfty}a^{frac{log_a(n)}n}=1$$But, if the second limit exists, then $$lim_{ntoinfty}a^{frac{log_a(n)}n}=lim_{ntoinfty}bigg(a^{log_a(n)}bigg)^{frac1n}=lim_{ntoinfty}n^{frac1n}=1$$
(If you aren't convinced of the last step, see this)
As such, if the limit exists, it has the value of 0.
$endgroup$
add a comment |
$begingroup$
Hint:
$$log_a(n) = -log_{1/a}(n).$$
$endgroup$
add a comment |
$begingroup$
Well, the cases $a<1$ or $a>1$ hardly have any difference as $$log_an=frac{log n}{log a}$$ and we know that $(1/n)log nto 0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025836%2fshow-that-lim-n-to-infty-frac-log-ann-0-for-0a1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We know that for arbitrary function $f$, $$lim_{ntoinfty}f(n)=0Longleftrightarrowlim_{ntoinfty}a^{f(n)}=1$$
So, if $f(n) = frac{log_a(n)}n$, then $$lim_{ntoinfty}frac{log_a(n)}n=0Longleftrightarrowlim_{ntoinfty}a^{frac{log_a(n)}n}=1$$But, if the second limit exists, then $$lim_{ntoinfty}a^{frac{log_a(n)}n}=lim_{ntoinfty}bigg(a^{log_a(n)}bigg)^{frac1n}=lim_{ntoinfty}n^{frac1n}=1$$
(If you aren't convinced of the last step, see this)
As such, if the limit exists, it has the value of 0.
$endgroup$
add a comment |
$begingroup$
We know that for arbitrary function $f$, $$lim_{ntoinfty}f(n)=0Longleftrightarrowlim_{ntoinfty}a^{f(n)}=1$$
So, if $f(n) = frac{log_a(n)}n$, then $$lim_{ntoinfty}frac{log_a(n)}n=0Longleftrightarrowlim_{ntoinfty}a^{frac{log_a(n)}n}=1$$But, if the second limit exists, then $$lim_{ntoinfty}a^{frac{log_a(n)}n}=lim_{ntoinfty}bigg(a^{log_a(n)}bigg)^{frac1n}=lim_{ntoinfty}n^{frac1n}=1$$
(If you aren't convinced of the last step, see this)
As such, if the limit exists, it has the value of 0.
$endgroup$
add a comment |
$begingroup$
We know that for arbitrary function $f$, $$lim_{ntoinfty}f(n)=0Longleftrightarrowlim_{ntoinfty}a^{f(n)}=1$$
So, if $f(n) = frac{log_a(n)}n$, then $$lim_{ntoinfty}frac{log_a(n)}n=0Longleftrightarrowlim_{ntoinfty}a^{frac{log_a(n)}n}=1$$But, if the second limit exists, then $$lim_{ntoinfty}a^{frac{log_a(n)}n}=lim_{ntoinfty}bigg(a^{log_a(n)}bigg)^{frac1n}=lim_{ntoinfty}n^{frac1n}=1$$
(If you aren't convinced of the last step, see this)
As such, if the limit exists, it has the value of 0.
$endgroup$
We know that for arbitrary function $f$, $$lim_{ntoinfty}f(n)=0Longleftrightarrowlim_{ntoinfty}a^{f(n)}=1$$
So, if $f(n) = frac{log_a(n)}n$, then $$lim_{ntoinfty}frac{log_a(n)}n=0Longleftrightarrowlim_{ntoinfty}a^{frac{log_a(n)}n}=1$$But, if the second limit exists, then $$lim_{ntoinfty}a^{frac{log_a(n)}n}=lim_{ntoinfty}bigg(a^{log_a(n)}bigg)^{frac1n}=lim_{ntoinfty}n^{frac1n}=1$$
(If you aren't convinced of the last step, see this)
As such, if the limit exists, it has the value of 0.
answered Dec 4 '18 at 17:16
Don ThousandDon Thousand
4,332734
4,332734
add a comment |
add a comment |
$begingroup$
Hint:
$$log_a(n) = -log_{1/a}(n).$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$log_a(n) = -log_{1/a}(n).$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$log_a(n) = -log_{1/a}(n).$$
$endgroup$
Hint:
$$log_a(n) = -log_{1/a}(n).$$
answered Dec 4 '18 at 17:18
Math LoverMath Lover
14k31436
14k31436
add a comment |
add a comment |
$begingroup$
Well, the cases $a<1$ or $a>1$ hardly have any difference as $$log_an=frac{log n}{log a}$$ and we know that $(1/n)log nto 0$.
$endgroup$
add a comment |
$begingroup$
Well, the cases $a<1$ or $a>1$ hardly have any difference as $$log_an=frac{log n}{log a}$$ and we know that $(1/n)log nto 0$.
$endgroup$
add a comment |
$begingroup$
Well, the cases $a<1$ or $a>1$ hardly have any difference as $$log_an=frac{log n}{log a}$$ and we know that $(1/n)log nto 0$.
$endgroup$
Well, the cases $a<1$ or $a>1$ hardly have any difference as $$log_an=frac{log n}{log a}$$ and we know that $(1/n)log nto 0$.
answered Dec 4 '18 at 17:43
Paramanand SinghParamanand Singh
49.9k556163
49.9k556163
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025836%2fshow-that-lim-n-to-infty-frac-log-ann-0-for-0a1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown