About $a_0=0, a_1=1$, $a_n=3 frac{a_{n-1}}{n-1} + 2a_{n-2}$ for $n > 1$.












1












$begingroup$


Let ${a_n}$ be defined by as the following: $a_0=0, a_1=1$



$$a_{n}=3frac{a_{n-1}}{n-1}+2a_{n-2}, forall n > 1$$
For example $a_2=3, a_3=frac{13}{2}$. Is its generating function equal to $$frac{x}{left(1-xsqrt{2}right)^2}cdot left(frac{1+xsqrt{2}}{1-xsqrt{2}}right)^{frac{3}{2sqrt{2}}-1}$$ ?





Let $s,t > 0$. Let ${b_n}$ be defined by as the following: $b_0=0, b_1=1$



$$b_n=scdot frac{b_{n-1}}{n-1} + tcdot b_{n-2}, forall n > 1$$



Is its generating function equal to
$$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{frac{s}{2sqrt{t}}-1}$$ ?



P.S.



$$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}=
frac{x}{s}cdot frac{d}{dx} left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}}$$



I think this generating function is correct.



(17:03) gp > N=26; x='x+O('x^N); Vec(x/(1-2^(1/2)*x)^2 * ((1+2^(1/2)*x)/(1-2^(1/2)*x))^(3/(2^(3/2))-1))
%1 = [1, 3.0000000000000000000000000000000000000, 6.5000000000000000000000000000000000000, 12.500000000000000000000000000000000000, 22.375000000000000000000000000000000000, 38.425000000000000000000000000000000000, 63.962500000000000000000000000000000001, 104.26250000000000000000000000000000000, 167.02343750000000000000000000000000000, 264.19947916666666666666666666666666667, 413.30671875000000000000000000000000000, 641.11897253787878787878787878787878788, 986.89318063446969696969696969696969697, 1509.9825252221736596736596736596736597, 2297.3540452451194638694638694638694638, 3479.4358594933712121212121212121212120, 5247.1023141452460300116550116550116547, 7884.8309508947270177738927738927738924, 11808.343120106279896318958818958818958, 17634.137131279919282334989571831677093, 26261.806809904547684988166073692389480, 39019.960949689059662525431439905124111, 57844.517385675785323957072798280932247, 85584.858949683656541219176723064282863, 126387.14214006202771556654268694489985]
(17:04) gp >









share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let ${a_n}$ be defined by as the following: $a_0=0, a_1=1$



    $$a_{n}=3frac{a_{n-1}}{n-1}+2a_{n-2}, forall n > 1$$
    For example $a_2=3, a_3=frac{13}{2}$. Is its generating function equal to $$frac{x}{left(1-xsqrt{2}right)^2}cdot left(frac{1+xsqrt{2}}{1-xsqrt{2}}right)^{frac{3}{2sqrt{2}}-1}$$ ?





    Let $s,t > 0$. Let ${b_n}$ be defined by as the following: $b_0=0, b_1=1$



    $$b_n=scdot frac{b_{n-1}}{n-1} + tcdot b_{n-2}, forall n > 1$$



    Is its generating function equal to
    $$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{frac{s}{2sqrt{t}}-1}$$ ?



    P.S.



    $$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}=
    frac{x}{s}cdot frac{d}{dx} left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}}$$



    I think this generating function is correct.



    (17:03) gp > N=26; x='x+O('x^N); Vec(x/(1-2^(1/2)*x)^2 * ((1+2^(1/2)*x)/(1-2^(1/2)*x))^(3/(2^(3/2))-1))
    %1 = [1, 3.0000000000000000000000000000000000000, 6.5000000000000000000000000000000000000, 12.500000000000000000000000000000000000, 22.375000000000000000000000000000000000, 38.425000000000000000000000000000000000, 63.962500000000000000000000000000000001, 104.26250000000000000000000000000000000, 167.02343750000000000000000000000000000, 264.19947916666666666666666666666666667, 413.30671875000000000000000000000000000, 641.11897253787878787878787878787878788, 986.89318063446969696969696969696969697, 1509.9825252221736596736596736596736597, 2297.3540452451194638694638694638694638, 3479.4358594933712121212121212121212120, 5247.1023141452460300116550116550116547, 7884.8309508947270177738927738927738924, 11808.343120106279896318958818958818958, 17634.137131279919282334989571831677093, 26261.806809904547684988166073692389480, 39019.960949689059662525431439905124111, 57844.517385675785323957072798280932247, 85584.858949683656541219176723064282863, 126387.14214006202771556654268694489985]
    (17:04) gp >









    share|cite|improve this question











    $endgroup$















      1












      1








      1


      2



      $begingroup$


      Let ${a_n}$ be defined by as the following: $a_0=0, a_1=1$



      $$a_{n}=3frac{a_{n-1}}{n-1}+2a_{n-2}, forall n > 1$$
      For example $a_2=3, a_3=frac{13}{2}$. Is its generating function equal to $$frac{x}{left(1-xsqrt{2}right)^2}cdot left(frac{1+xsqrt{2}}{1-xsqrt{2}}right)^{frac{3}{2sqrt{2}}-1}$$ ?





      Let $s,t > 0$. Let ${b_n}$ be defined by as the following: $b_0=0, b_1=1$



      $$b_n=scdot frac{b_{n-1}}{n-1} + tcdot b_{n-2}, forall n > 1$$



      Is its generating function equal to
      $$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{frac{s}{2sqrt{t}}-1}$$ ?



      P.S.



      $$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}=
      frac{x}{s}cdot frac{d}{dx} left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}}$$



      I think this generating function is correct.



      (17:03) gp > N=26; x='x+O('x^N); Vec(x/(1-2^(1/2)*x)^2 * ((1+2^(1/2)*x)/(1-2^(1/2)*x))^(3/(2^(3/2))-1))
      %1 = [1, 3.0000000000000000000000000000000000000, 6.5000000000000000000000000000000000000, 12.500000000000000000000000000000000000, 22.375000000000000000000000000000000000, 38.425000000000000000000000000000000000, 63.962500000000000000000000000000000001, 104.26250000000000000000000000000000000, 167.02343750000000000000000000000000000, 264.19947916666666666666666666666666667, 413.30671875000000000000000000000000000, 641.11897253787878787878787878787878788, 986.89318063446969696969696969696969697, 1509.9825252221736596736596736596736597, 2297.3540452451194638694638694638694638, 3479.4358594933712121212121212121212120, 5247.1023141452460300116550116550116547, 7884.8309508947270177738927738927738924, 11808.343120106279896318958818958818958, 17634.137131279919282334989571831677093, 26261.806809904547684988166073692389480, 39019.960949689059662525431439905124111, 57844.517385675785323957072798280932247, 85584.858949683656541219176723064282863, 126387.14214006202771556654268694489985]
      (17:04) gp >









      share|cite|improve this question











      $endgroup$




      Let ${a_n}$ be defined by as the following: $a_0=0, a_1=1$



      $$a_{n}=3frac{a_{n-1}}{n-1}+2a_{n-2}, forall n > 1$$
      For example $a_2=3, a_3=frac{13}{2}$. Is its generating function equal to $$frac{x}{left(1-xsqrt{2}right)^2}cdot left(frac{1+xsqrt{2}}{1-xsqrt{2}}right)^{frac{3}{2sqrt{2}}-1}$$ ?





      Let $s,t > 0$. Let ${b_n}$ be defined by as the following: $b_0=0, b_1=1$



      $$b_n=scdot frac{b_{n-1}}{n-1} + tcdot b_{n-2}, forall n > 1$$



      Is its generating function equal to
      $$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{frac{s}{2sqrt{t}}-1}$$ ?



      P.S.



      $$frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}=
      frac{x}{s}cdot frac{d}{dx} left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}}$$



      I think this generating function is correct.



      (17:03) gp > N=26; x='x+O('x^N); Vec(x/(1-2^(1/2)*x)^2 * ((1+2^(1/2)*x)/(1-2^(1/2)*x))^(3/(2^(3/2))-1))
      %1 = [1, 3.0000000000000000000000000000000000000, 6.5000000000000000000000000000000000000, 12.500000000000000000000000000000000000, 22.375000000000000000000000000000000000, 38.425000000000000000000000000000000000, 63.962500000000000000000000000000000001, 104.26250000000000000000000000000000000, 167.02343750000000000000000000000000000, 264.19947916666666666666666666666666667, 413.30671875000000000000000000000000000, 641.11897253787878787878787878787878788, 986.89318063446969696969696969696969697, 1509.9825252221736596736596736596736597, 2297.3540452451194638694638694638694638, 3479.4358594933712121212121212121212120, 5247.1023141452460300116550116550116547, 7884.8309508947270177738927738927738924, 11808.343120106279896318958818958818958, 17634.137131279919282334989571831677093, 26261.806809904547684988166073692389480, 39019.960949689059662525431439905124111, 57844.517385675785323957072798280932247, 85584.858949683656541219176723064282863, 126387.14214006202771556654268694489985]
      (17:04) gp >






      sequences-and-series recurrence-relations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 16 '18 at 14:27









      rtybase

      11.4k31533




      11.4k31533










      asked Dec 16 '18 at 11:22









      ManyamaManyama

      5021415




      5021415






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Incomplete answer. I presume you mean generating function. If so, then
          $$f(x)=a_0+a_1x+sumlimits_{n=2}a_nx^n=
          x+sumlimits_{n=2}left(3frac{a_{n-1}}{n-1}+2a_{n-2}right)x^n=\
          x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2sumlimits_{n=2}a_{n-2}x^n=\
          x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2x^2sumlimits_{n=2}a_{n-2}x^{n-2}=\
          x+3xsumlimits_{n=2}frac{a_{n-1}}{n-1}x^{n-1}+2x^2f(x)$$

          or
          $$f(x)left(frac{1-2x^2}{x}right)=1+3sumlimits_{n=1}frac{a_{n}}{n}x^{n}$$
          now we derivate
          $$left[f(x)left(frac{1-2x^2}{x}right)right]'=3sumlimits_{n=1}a_{n}x^{n-1}=frac{3}{x}sumlimits_{n=1}a_{n}x^{n}=frac{3f(x)}{x}$$
          or
          $$f'(x)left(frac{1-2x^2}{x}right)-f(x)left(2+frac{1}{x^2}right)=frac{3f(x)}{x}$$
          or
          $$f'(x)left(1-2x^2right)-f(x)left(2x+frac{1}{x}right)=3f(x)$$
          $$f'(x)left(1-2x^2right)=f(x)left(3+2x+frac{1}{x}right)$$
          $$frac{f'(x)}{f(x)}=frac{3+2x+frac{1}{x}}{1-2x^2}$$
          Solve the differential equation and you have an yes to your first question.






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Thank you. The second question may be proved in the same way as you.
            $endgroup$
            – Manyama
            Dec 16 '18 at 15:30





















          1












          $begingroup$

          Complete answer -rtybase's way-
          $$f(x)=b_0+b_1x+sumlimits_{n=2}b_nx^n=
          x+sumlimits_{n=2}left(sfrac{b_{n-1}}{n-1}+tb_{n-2}right)x^n=\
          x+sxsumlimits_{n=2}frac{b_{n-1}}{n-1}x^{n-1}+tx^2f(x).$$



          So
          $$f(x)left(frac{1-tx^2}{x}right)=1+ssumlimits_{n=1}frac{b_{n}}{n}x^{n}.$$
          Now we derivate
          $$left[f(x)left(frac{1-tx^2}{x}right)right]'=frac{s}{x}sumlimits_{n=1}b_{n}x^{n}=frac{sf(x)}{x}.$$
          So
          $$f'(x)left(frac{1-tx^2}{x}right)-f(x)left(t+frac{1}{x^2}right)=frac{sf(x)}{x}.$$
          Hence
          $$frac{f'(x)}{f(x)}=frac{tx+s+frac{1}{x}}{1-tx^2}.$$
          Solve the differential equation and we have



          $$f(x)=frac{x}{1-tx^2} * (frac{1+xsqrt t}{1-xsqrt t})^{frac{s}{2sqrt t}}=
          frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}.$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042490%2fabout-a-0-0-a-1-1-a-n-3-fraca-n-1n-1-2a-n-2-for-n-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Incomplete answer. I presume you mean generating function. If so, then
            $$f(x)=a_0+a_1x+sumlimits_{n=2}a_nx^n=
            x+sumlimits_{n=2}left(3frac{a_{n-1}}{n-1}+2a_{n-2}right)x^n=\
            x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2sumlimits_{n=2}a_{n-2}x^n=\
            x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2x^2sumlimits_{n=2}a_{n-2}x^{n-2}=\
            x+3xsumlimits_{n=2}frac{a_{n-1}}{n-1}x^{n-1}+2x^2f(x)$$

            or
            $$f(x)left(frac{1-2x^2}{x}right)=1+3sumlimits_{n=1}frac{a_{n}}{n}x^{n}$$
            now we derivate
            $$left[f(x)left(frac{1-2x^2}{x}right)right]'=3sumlimits_{n=1}a_{n}x^{n-1}=frac{3}{x}sumlimits_{n=1}a_{n}x^{n}=frac{3f(x)}{x}$$
            or
            $$f'(x)left(frac{1-2x^2}{x}right)-f(x)left(2+frac{1}{x^2}right)=frac{3f(x)}{x}$$
            or
            $$f'(x)left(1-2x^2right)-f(x)left(2x+frac{1}{x}right)=3f(x)$$
            $$f'(x)left(1-2x^2right)=f(x)left(3+2x+frac{1}{x}right)$$
            $$frac{f'(x)}{f(x)}=frac{3+2x+frac{1}{x}}{1-2x^2}$$
            Solve the differential equation and you have an yes to your first question.






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Thank you. The second question may be proved in the same way as you.
              $endgroup$
              – Manyama
              Dec 16 '18 at 15:30


















            2












            $begingroup$

            Incomplete answer. I presume you mean generating function. If so, then
            $$f(x)=a_0+a_1x+sumlimits_{n=2}a_nx^n=
            x+sumlimits_{n=2}left(3frac{a_{n-1}}{n-1}+2a_{n-2}right)x^n=\
            x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2sumlimits_{n=2}a_{n-2}x^n=\
            x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2x^2sumlimits_{n=2}a_{n-2}x^{n-2}=\
            x+3xsumlimits_{n=2}frac{a_{n-1}}{n-1}x^{n-1}+2x^2f(x)$$

            or
            $$f(x)left(frac{1-2x^2}{x}right)=1+3sumlimits_{n=1}frac{a_{n}}{n}x^{n}$$
            now we derivate
            $$left[f(x)left(frac{1-2x^2}{x}right)right]'=3sumlimits_{n=1}a_{n}x^{n-1}=frac{3}{x}sumlimits_{n=1}a_{n}x^{n}=frac{3f(x)}{x}$$
            or
            $$f'(x)left(frac{1-2x^2}{x}right)-f(x)left(2+frac{1}{x^2}right)=frac{3f(x)}{x}$$
            or
            $$f'(x)left(1-2x^2right)-f(x)left(2x+frac{1}{x}right)=3f(x)$$
            $$f'(x)left(1-2x^2right)=f(x)left(3+2x+frac{1}{x}right)$$
            $$frac{f'(x)}{f(x)}=frac{3+2x+frac{1}{x}}{1-2x^2}$$
            Solve the differential equation and you have an yes to your first question.






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Thank you. The second question may be proved in the same way as you.
              $endgroup$
              – Manyama
              Dec 16 '18 at 15:30
















            2












            2








            2





            $begingroup$

            Incomplete answer. I presume you mean generating function. If so, then
            $$f(x)=a_0+a_1x+sumlimits_{n=2}a_nx^n=
            x+sumlimits_{n=2}left(3frac{a_{n-1}}{n-1}+2a_{n-2}right)x^n=\
            x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2sumlimits_{n=2}a_{n-2}x^n=\
            x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2x^2sumlimits_{n=2}a_{n-2}x^{n-2}=\
            x+3xsumlimits_{n=2}frac{a_{n-1}}{n-1}x^{n-1}+2x^2f(x)$$

            or
            $$f(x)left(frac{1-2x^2}{x}right)=1+3sumlimits_{n=1}frac{a_{n}}{n}x^{n}$$
            now we derivate
            $$left[f(x)left(frac{1-2x^2}{x}right)right]'=3sumlimits_{n=1}a_{n}x^{n-1}=frac{3}{x}sumlimits_{n=1}a_{n}x^{n}=frac{3f(x)}{x}$$
            or
            $$f'(x)left(frac{1-2x^2}{x}right)-f(x)left(2+frac{1}{x^2}right)=frac{3f(x)}{x}$$
            or
            $$f'(x)left(1-2x^2right)-f(x)left(2x+frac{1}{x}right)=3f(x)$$
            $$f'(x)left(1-2x^2right)=f(x)left(3+2x+frac{1}{x}right)$$
            $$frac{f'(x)}{f(x)}=frac{3+2x+frac{1}{x}}{1-2x^2}$$
            Solve the differential equation and you have an yes to your first question.






            share|cite|improve this answer









            $endgroup$



            Incomplete answer. I presume you mean generating function. If so, then
            $$f(x)=a_0+a_1x+sumlimits_{n=2}a_nx^n=
            x+sumlimits_{n=2}left(3frac{a_{n-1}}{n-1}+2a_{n-2}right)x^n=\
            x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2sumlimits_{n=2}a_{n-2}x^n=\
            x+3sumlimits_{n=2}frac{a_{n-1}}{n-1}x^n+2x^2sumlimits_{n=2}a_{n-2}x^{n-2}=\
            x+3xsumlimits_{n=2}frac{a_{n-1}}{n-1}x^{n-1}+2x^2f(x)$$

            or
            $$f(x)left(frac{1-2x^2}{x}right)=1+3sumlimits_{n=1}frac{a_{n}}{n}x^{n}$$
            now we derivate
            $$left[f(x)left(frac{1-2x^2}{x}right)right]'=3sumlimits_{n=1}a_{n}x^{n-1}=frac{3}{x}sumlimits_{n=1}a_{n}x^{n}=frac{3f(x)}{x}$$
            or
            $$f'(x)left(frac{1-2x^2}{x}right)-f(x)left(2+frac{1}{x^2}right)=frac{3f(x)}{x}$$
            or
            $$f'(x)left(1-2x^2right)-f(x)left(2x+frac{1}{x}right)=3f(x)$$
            $$f'(x)left(1-2x^2right)=f(x)left(3+2x+frac{1}{x}right)$$
            $$frac{f'(x)}{f(x)}=frac{3+2x+frac{1}{x}}{1-2x^2}$$
            Solve the differential equation and you have an yes to your first question.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 16 '18 at 13:40









            rtybasertybase

            11.4k31533




            11.4k31533








            • 1




              $begingroup$
              Thank you. The second question may be proved in the same way as you.
              $endgroup$
              – Manyama
              Dec 16 '18 at 15:30
















            • 1




              $begingroup$
              Thank you. The second question may be proved in the same way as you.
              $endgroup$
              – Manyama
              Dec 16 '18 at 15:30










            1




            1




            $begingroup$
            Thank you. The second question may be proved in the same way as you.
            $endgroup$
            – Manyama
            Dec 16 '18 at 15:30






            $begingroup$
            Thank you. The second question may be proved in the same way as you.
            $endgroup$
            – Manyama
            Dec 16 '18 at 15:30













            1












            $begingroup$

            Complete answer -rtybase's way-
            $$f(x)=b_0+b_1x+sumlimits_{n=2}b_nx^n=
            x+sumlimits_{n=2}left(sfrac{b_{n-1}}{n-1}+tb_{n-2}right)x^n=\
            x+sxsumlimits_{n=2}frac{b_{n-1}}{n-1}x^{n-1}+tx^2f(x).$$



            So
            $$f(x)left(frac{1-tx^2}{x}right)=1+ssumlimits_{n=1}frac{b_{n}}{n}x^{n}.$$
            Now we derivate
            $$left[f(x)left(frac{1-tx^2}{x}right)right]'=frac{s}{x}sumlimits_{n=1}b_{n}x^{n}=frac{sf(x)}{x}.$$
            So
            $$f'(x)left(frac{1-tx^2}{x}right)-f(x)left(t+frac{1}{x^2}right)=frac{sf(x)}{x}.$$
            Hence
            $$frac{f'(x)}{f(x)}=frac{tx+s+frac{1}{x}}{1-tx^2}.$$
            Solve the differential equation and we have



            $$f(x)=frac{x}{1-tx^2} * (frac{1+xsqrt t}{1-xsqrt t})^{frac{s}{2sqrt t}}=
            frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}.$$






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              Complete answer -rtybase's way-
              $$f(x)=b_0+b_1x+sumlimits_{n=2}b_nx^n=
              x+sumlimits_{n=2}left(sfrac{b_{n-1}}{n-1}+tb_{n-2}right)x^n=\
              x+sxsumlimits_{n=2}frac{b_{n-1}}{n-1}x^{n-1}+tx^2f(x).$$



              So
              $$f(x)left(frac{1-tx^2}{x}right)=1+ssumlimits_{n=1}frac{b_{n}}{n}x^{n}.$$
              Now we derivate
              $$left[f(x)left(frac{1-tx^2}{x}right)right]'=frac{s}{x}sumlimits_{n=1}b_{n}x^{n}=frac{sf(x)}{x}.$$
              So
              $$f'(x)left(frac{1-tx^2}{x}right)-f(x)left(t+frac{1}{x^2}right)=frac{sf(x)}{x}.$$
              Hence
              $$frac{f'(x)}{f(x)}=frac{tx+s+frac{1}{x}}{1-tx^2}.$$
              Solve the differential equation and we have



              $$f(x)=frac{x}{1-tx^2} * (frac{1+xsqrt t}{1-xsqrt t})^{frac{s}{2sqrt t}}=
              frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}.$$






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                Complete answer -rtybase's way-
                $$f(x)=b_0+b_1x+sumlimits_{n=2}b_nx^n=
                x+sumlimits_{n=2}left(sfrac{b_{n-1}}{n-1}+tb_{n-2}right)x^n=\
                x+sxsumlimits_{n=2}frac{b_{n-1}}{n-1}x^{n-1}+tx^2f(x).$$



                So
                $$f(x)left(frac{1-tx^2}{x}right)=1+ssumlimits_{n=1}frac{b_{n}}{n}x^{n}.$$
                Now we derivate
                $$left[f(x)left(frac{1-tx^2}{x}right)right]'=frac{s}{x}sumlimits_{n=1}b_{n}x^{n}=frac{sf(x)}{x}.$$
                So
                $$f'(x)left(frac{1-tx^2}{x}right)-f(x)left(t+frac{1}{x^2}right)=frac{sf(x)}{x}.$$
                Hence
                $$frac{f'(x)}{f(x)}=frac{tx+s+frac{1}{x}}{1-tx^2}.$$
                Solve the differential equation and we have



                $$f(x)=frac{x}{1-tx^2} * (frac{1+xsqrt t}{1-xsqrt t})^{frac{s}{2sqrt t}}=
                frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}.$$






                share|cite|improve this answer











                $endgroup$



                Complete answer -rtybase's way-
                $$f(x)=b_0+b_1x+sumlimits_{n=2}b_nx^n=
                x+sumlimits_{n=2}left(sfrac{b_{n-1}}{n-1}+tb_{n-2}right)x^n=\
                x+sxsumlimits_{n=2}frac{b_{n-1}}{n-1}x^{n-1}+tx^2f(x).$$



                So
                $$f(x)left(frac{1-tx^2}{x}right)=1+ssumlimits_{n=1}frac{b_{n}}{n}x^{n}.$$
                Now we derivate
                $$left[f(x)left(frac{1-tx^2}{x}right)right]'=frac{s}{x}sumlimits_{n=1}b_{n}x^{n}=frac{sf(x)}{x}.$$
                So
                $$f'(x)left(frac{1-tx^2}{x}right)-f(x)left(t+frac{1}{x^2}right)=frac{sf(x)}{x}.$$
                Hence
                $$frac{f'(x)}{f(x)}=frac{tx+s+frac{1}{x}}{1-tx^2}.$$
                Solve the differential equation and we have



                $$f(x)=frac{x}{1-tx^2} * (frac{1+xsqrt t}{1-xsqrt t})^{frac{s}{2sqrt t}}=
                frac{x}{left(1-xsqrt{t}right)^2}cdot left(frac{1+xsqrt{t}}{1-xsqrt{t}}right)^{ frac{s}{2sqrt{t}}-1}.$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 17 '18 at 12:34

























                answered Dec 17 '18 at 11:47









                ManyamaManyama

                5021415




                5021415






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042490%2fabout-a-0-0-a-1-1-a-n-3-fraca-n-1n-1-2a-n-2-for-n-1%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Plaza Victoria

                    In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

                    How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...