Rewriting this complex square root












2












$begingroup$


for some reason I can to figure out how to rewrite this square root.
I have:



$sqrt{2+i}$



And I need to rewrite it into:



$frac{sqrt{2(sqrt{5} + 2)} + sqrt{-2(sqrt{5} - 2)}}{2}$



Can anybody show me I to do this? I've been trying for an hour now..










share|cite|improve this question









$endgroup$








  • 6




    $begingroup$
    Hint: $sqrt{cos theta + i sin theta} = cos(theta/2) + i sin(theta / 2)$. Note $2 + i = sqrt{5} cdot left(frac{2}{sqrt 5} + i frac{1}{sqrt 5}right)$
    $endgroup$
    – Omnomnomnom
    Jun 27 '14 at 19:44












  • $begingroup$
    Solve $(x+iy)^2=x^2-y^2+2ixy=2+i$.
    $endgroup$
    – Yves Daoust
    Jun 27 '14 at 19:54








  • 1




    $begingroup$
    @DaneBouchie Read that again. I say $$ 2 + i = sqrt{5} cdot left(frac{2}{sqrt 5} + i frac{1}{sqrt 5}right) $$
    $endgroup$
    – Omnomnomnom
    Jun 27 '14 at 20:18










  • $begingroup$
    Ah, my bad. I read $.$ as a period for some reason. Even then, lazy reading on my behalf.
    $endgroup$
    – Dane Bouchie
    Jun 27 '14 at 20:22


















2












$begingroup$


for some reason I can to figure out how to rewrite this square root.
I have:



$sqrt{2+i}$



And I need to rewrite it into:



$frac{sqrt{2(sqrt{5} + 2)} + sqrt{-2(sqrt{5} - 2)}}{2}$



Can anybody show me I to do this? I've been trying for an hour now..










share|cite|improve this question









$endgroup$








  • 6




    $begingroup$
    Hint: $sqrt{cos theta + i sin theta} = cos(theta/2) + i sin(theta / 2)$. Note $2 + i = sqrt{5} cdot left(frac{2}{sqrt 5} + i frac{1}{sqrt 5}right)$
    $endgroup$
    – Omnomnomnom
    Jun 27 '14 at 19:44












  • $begingroup$
    Solve $(x+iy)^2=x^2-y^2+2ixy=2+i$.
    $endgroup$
    – Yves Daoust
    Jun 27 '14 at 19:54








  • 1




    $begingroup$
    @DaneBouchie Read that again. I say $$ 2 + i = sqrt{5} cdot left(frac{2}{sqrt 5} + i frac{1}{sqrt 5}right) $$
    $endgroup$
    – Omnomnomnom
    Jun 27 '14 at 20:18










  • $begingroup$
    Ah, my bad. I read $.$ as a period for some reason. Even then, lazy reading on my behalf.
    $endgroup$
    – Dane Bouchie
    Jun 27 '14 at 20:22
















2












2








2


0



$begingroup$


for some reason I can to figure out how to rewrite this square root.
I have:



$sqrt{2+i}$



And I need to rewrite it into:



$frac{sqrt{2(sqrt{5} + 2)} + sqrt{-2(sqrt{5} - 2)}}{2}$



Can anybody show me I to do this? I've been trying for an hour now..










share|cite|improve this question









$endgroup$




for some reason I can to figure out how to rewrite this square root.
I have:



$sqrt{2+i}$



And I need to rewrite it into:



$frac{sqrt{2(sqrt{5} + 2)} + sqrt{-2(sqrt{5} - 2)}}{2}$



Can anybody show me I to do this? I've been trying for an hour now..







complex-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jun 27 '14 at 19:40









user160513user160513

141




141








  • 6




    $begingroup$
    Hint: $sqrt{cos theta + i sin theta} = cos(theta/2) + i sin(theta / 2)$. Note $2 + i = sqrt{5} cdot left(frac{2}{sqrt 5} + i frac{1}{sqrt 5}right)$
    $endgroup$
    – Omnomnomnom
    Jun 27 '14 at 19:44












  • $begingroup$
    Solve $(x+iy)^2=x^2-y^2+2ixy=2+i$.
    $endgroup$
    – Yves Daoust
    Jun 27 '14 at 19:54








  • 1




    $begingroup$
    @DaneBouchie Read that again. I say $$ 2 + i = sqrt{5} cdot left(frac{2}{sqrt 5} + i frac{1}{sqrt 5}right) $$
    $endgroup$
    – Omnomnomnom
    Jun 27 '14 at 20:18










  • $begingroup$
    Ah, my bad. I read $.$ as a period for some reason. Even then, lazy reading on my behalf.
    $endgroup$
    – Dane Bouchie
    Jun 27 '14 at 20:22
















  • 6




    $begingroup$
    Hint: $sqrt{cos theta + i sin theta} = cos(theta/2) + i sin(theta / 2)$. Note $2 + i = sqrt{5} cdot left(frac{2}{sqrt 5} + i frac{1}{sqrt 5}right)$
    $endgroup$
    – Omnomnomnom
    Jun 27 '14 at 19:44












  • $begingroup$
    Solve $(x+iy)^2=x^2-y^2+2ixy=2+i$.
    $endgroup$
    – Yves Daoust
    Jun 27 '14 at 19:54








  • 1




    $begingroup$
    @DaneBouchie Read that again. I say $$ 2 + i = sqrt{5} cdot left(frac{2}{sqrt 5} + i frac{1}{sqrt 5}right) $$
    $endgroup$
    – Omnomnomnom
    Jun 27 '14 at 20:18










  • $begingroup$
    Ah, my bad. I read $.$ as a period for some reason. Even then, lazy reading on my behalf.
    $endgroup$
    – Dane Bouchie
    Jun 27 '14 at 20:22










6




6




$begingroup$
Hint: $sqrt{cos theta + i sin theta} = cos(theta/2) + i sin(theta / 2)$. Note $2 + i = sqrt{5} cdot left(frac{2}{sqrt 5} + i frac{1}{sqrt 5}right)$
$endgroup$
– Omnomnomnom
Jun 27 '14 at 19:44






$begingroup$
Hint: $sqrt{cos theta + i sin theta} = cos(theta/2) + i sin(theta / 2)$. Note $2 + i = sqrt{5} cdot left(frac{2}{sqrt 5} + i frac{1}{sqrt 5}right)$
$endgroup$
– Omnomnomnom
Jun 27 '14 at 19:44














$begingroup$
Solve $(x+iy)^2=x^2-y^2+2ixy=2+i$.
$endgroup$
– Yves Daoust
Jun 27 '14 at 19:54






$begingroup$
Solve $(x+iy)^2=x^2-y^2+2ixy=2+i$.
$endgroup$
– Yves Daoust
Jun 27 '14 at 19:54






1




1




$begingroup$
@DaneBouchie Read that again. I say $$ 2 + i = sqrt{5} cdot left(frac{2}{sqrt 5} + i frac{1}{sqrt 5}right) $$
$endgroup$
– Omnomnomnom
Jun 27 '14 at 20:18




$begingroup$
@DaneBouchie Read that again. I say $$ 2 + i = sqrt{5} cdot left(frac{2}{sqrt 5} + i frac{1}{sqrt 5}right) $$
$endgroup$
– Omnomnomnom
Jun 27 '14 at 20:18












$begingroup$
Ah, my bad. I read $.$ as a period for some reason. Even then, lazy reading on my behalf.
$endgroup$
– Dane Bouchie
Jun 27 '14 at 20:22






$begingroup$
Ah, my bad. I read $.$ as a period for some reason. Even then, lazy reading on my behalf.
$endgroup$
– Dane Bouchie
Jun 27 '14 at 20:22












1 Answer
1






active

oldest

votes


















2












$begingroup$

One can use trigonometry for sure but I thing the fastest way to solve this is just to solve the quadratic.
$$(x+yi)^2=2+i$$ so



$$x^2-y^2=2$$
$$2xy=1$$



and $$(x^2+y^2)^2=(x^2-y^2)^2+4x^2y^2=4+1=5$$



So $$x^2+y^2=sqrt{5}$$
(positive since $x$ and $y$ real)
and
$$x^2=frac{sqrt{5}+2}{2}$$
$$y^2=frac{sqrt{5}-2}{2}$$



so



$$x=pmsqrt{frac{sqrt{5}+2}{2}}$$
$$y=pmsqrt{frac{sqrt{5}-2}{2}}$$



Both $x$ and $y$ have same sign since $2xy=1$.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f849747%2frewriting-this-complex-square-root%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    One can use trigonometry for sure but I thing the fastest way to solve this is just to solve the quadratic.
    $$(x+yi)^2=2+i$$ so



    $$x^2-y^2=2$$
    $$2xy=1$$



    and $$(x^2+y^2)^2=(x^2-y^2)^2+4x^2y^2=4+1=5$$



    So $$x^2+y^2=sqrt{5}$$
    (positive since $x$ and $y$ real)
    and
    $$x^2=frac{sqrt{5}+2}{2}$$
    $$y^2=frac{sqrt{5}-2}{2}$$



    so



    $$x=pmsqrt{frac{sqrt{5}+2}{2}}$$
    $$y=pmsqrt{frac{sqrt{5}-2}{2}}$$



    Both $x$ and $y$ have same sign since $2xy=1$.






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      One can use trigonometry for sure but I thing the fastest way to solve this is just to solve the quadratic.
      $$(x+yi)^2=2+i$$ so



      $$x^2-y^2=2$$
      $$2xy=1$$



      and $$(x^2+y^2)^2=(x^2-y^2)^2+4x^2y^2=4+1=5$$



      So $$x^2+y^2=sqrt{5}$$
      (positive since $x$ and $y$ real)
      and
      $$x^2=frac{sqrt{5}+2}{2}$$
      $$y^2=frac{sqrt{5}-2}{2}$$



      so



      $$x=pmsqrt{frac{sqrt{5}+2}{2}}$$
      $$y=pmsqrt{frac{sqrt{5}-2}{2}}$$



      Both $x$ and $y$ have same sign since $2xy=1$.






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        One can use trigonometry for sure but I thing the fastest way to solve this is just to solve the quadratic.
        $$(x+yi)^2=2+i$$ so



        $$x^2-y^2=2$$
        $$2xy=1$$



        and $$(x^2+y^2)^2=(x^2-y^2)^2+4x^2y^2=4+1=5$$



        So $$x^2+y^2=sqrt{5}$$
        (positive since $x$ and $y$ real)
        and
        $$x^2=frac{sqrt{5}+2}{2}$$
        $$y^2=frac{sqrt{5}-2}{2}$$



        so



        $$x=pmsqrt{frac{sqrt{5}+2}{2}}$$
        $$y=pmsqrt{frac{sqrt{5}-2}{2}}$$



        Both $x$ and $y$ have same sign since $2xy=1$.






        share|cite|improve this answer











        $endgroup$



        One can use trigonometry for sure but I thing the fastest way to solve this is just to solve the quadratic.
        $$(x+yi)^2=2+i$$ so



        $$x^2-y^2=2$$
        $$2xy=1$$



        and $$(x^2+y^2)^2=(x^2-y^2)^2+4x^2y^2=4+1=5$$



        So $$x^2+y^2=sqrt{5}$$
        (positive since $x$ and $y$ real)
        and
        $$x^2=frac{sqrt{5}+2}{2}$$
        $$y^2=frac{sqrt{5}-2}{2}$$



        so



        $$x=pmsqrt{frac{sqrt{5}+2}{2}}$$
        $$y=pmsqrt{frac{sqrt{5}-2}{2}}$$



        Both $x$ and $y$ have same sign since $2xy=1$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 16 '18 at 10:39









        Did

        248k23225463




        248k23225463










        answered Jun 27 '14 at 20:50









        Rene SchipperusRene Schipperus

        32.4k11960




        32.4k11960






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f849747%2frewriting-this-complex-square-root%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa