Indeterminate form and L'Hospital rule
$begingroup$
$$
lim_{x to infty}frac{e^x}{x^2}
= lim_{x to infty}frac{e^x}{2x}
= lim_{x to infty}frac{e^x}{2}
= infty
$$
Can anybody tell me please why L'hospital's rule been used only two times?
From my point of view, $frac{infty}{infty}$ is indeterminate form but at the end, only $infty$ is also indeterminate form.
calculus
$endgroup$
add a comment |
$begingroup$
$$
lim_{x to infty}frac{e^x}{x^2}
= lim_{x to infty}frac{e^x}{2x}
= lim_{x to infty}frac{e^x}{2}
= infty
$$
Can anybody tell me please why L'hospital's rule been used only two times?
From my point of view, $frac{infty}{infty}$ is indeterminate form but at the end, only $infty$ is also indeterminate form.
calculus
$endgroup$
$begingroup$
$infty$ is not indeterminate form (see here)[en.wikipedia.org/wiki/Indeterminate_form]
$endgroup$
– Viktor Glombik
Dec 16 '18 at 10:58
add a comment |
$begingroup$
$$
lim_{x to infty}frac{e^x}{x^2}
= lim_{x to infty}frac{e^x}{2x}
= lim_{x to infty}frac{e^x}{2}
= infty
$$
Can anybody tell me please why L'hospital's rule been used only two times?
From my point of view, $frac{infty}{infty}$ is indeterminate form but at the end, only $infty$ is also indeterminate form.
calculus
$endgroup$
$$
lim_{x to infty}frac{e^x}{x^2}
= lim_{x to infty}frac{e^x}{2x}
= lim_{x to infty}frac{e^x}{2}
= infty
$$
Can anybody tell me please why L'hospital's rule been used only two times?
From my point of view, $frac{infty}{infty}$ is indeterminate form but at the end, only $infty$ is also indeterminate form.
calculus
calculus
edited Dec 16 '18 at 11:06
Namaste
1
1
asked Dec 16 '18 at 10:55
Jobiar HossainJobiar Hossain
414
414
$begingroup$
$infty$ is not indeterminate form (see here)[en.wikipedia.org/wiki/Indeterminate_form]
$endgroup$
– Viktor Glombik
Dec 16 '18 at 10:58
add a comment |
$begingroup$
$infty$ is not indeterminate form (see here)[en.wikipedia.org/wiki/Indeterminate_form]
$endgroup$
– Viktor Glombik
Dec 16 '18 at 10:58
$begingroup$
$infty$ is not indeterminate form (see here)[en.wikipedia.org/wiki/Indeterminate_form]
$endgroup$
– Viktor Glombik
Dec 16 '18 at 10:58
$begingroup$
$infty$ is not indeterminate form (see here)[en.wikipedia.org/wiki/Indeterminate_form]
$endgroup$
– Viktor Glombik
Dec 16 '18 at 10:58
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Your application is correct indeed also $frac{e^x}{2x}$ is in the form $frac{infty}{infty}$ while the last one is not an indeterminate form and the limit is indeed infinity.
As an alternative note that eventually $e^xge x^3$ and then
$$frac{e^x}{x^2}ge frac{x^3}{x^2}ge xto infty$$
We can prove that also by induction, that is $e^n ge n^3$
- base case: $n=1 implies ege 1$, $n=2 implies e^2notge 8$, $n=3 implies e^3notge 27$, $n=4 implies e^4notge 64$,$n=5 implies e^5ge 125$
- induction step: assume true $e^k ge k^3$ for some $k$ then
$$e^{k+1}=ecdot e^k ge ecdot k^3ge 2cdot k^3stackrel{?}ge (k+1)^3$$
and the latter is true indeed
$$2cdot k^3ge (k+1)^3$$
$$k(k^2-3k-3)ge 1, quad kge 4$$
$endgroup$
add a comment |
$begingroup$
Note that $infty$ is not an intermediate form. Simply put :
$$lim_{x to infty} frac{e^x}{2} = frac{1}{2}lim_{x to infty} e^x =infty$$
Indeterminate forms are typically considered to be :
$$frac{0}{0}, frac{infty}{infty}, 0 cdot infty, 1^infty, infty - infty, 0^infty,infty^0$$
$endgroup$
$begingroup$
I guess you intended to write "indeterminate", not "intermediate"
$endgroup$
– jjagmath
Dec 16 '18 at 11:37
$begingroup$
@jjagmath Thanks!
$endgroup$
– Rebellos
Dec 16 '18 at 11:37
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042468%2findeterminate-form-and-lhospital-rule%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your application is correct indeed also $frac{e^x}{2x}$ is in the form $frac{infty}{infty}$ while the last one is not an indeterminate form and the limit is indeed infinity.
As an alternative note that eventually $e^xge x^3$ and then
$$frac{e^x}{x^2}ge frac{x^3}{x^2}ge xto infty$$
We can prove that also by induction, that is $e^n ge n^3$
- base case: $n=1 implies ege 1$, $n=2 implies e^2notge 8$, $n=3 implies e^3notge 27$, $n=4 implies e^4notge 64$,$n=5 implies e^5ge 125$
- induction step: assume true $e^k ge k^3$ for some $k$ then
$$e^{k+1}=ecdot e^k ge ecdot k^3ge 2cdot k^3stackrel{?}ge (k+1)^3$$
and the latter is true indeed
$$2cdot k^3ge (k+1)^3$$
$$k(k^2-3k-3)ge 1, quad kge 4$$
$endgroup$
add a comment |
$begingroup$
Your application is correct indeed also $frac{e^x}{2x}$ is in the form $frac{infty}{infty}$ while the last one is not an indeterminate form and the limit is indeed infinity.
As an alternative note that eventually $e^xge x^3$ and then
$$frac{e^x}{x^2}ge frac{x^3}{x^2}ge xto infty$$
We can prove that also by induction, that is $e^n ge n^3$
- base case: $n=1 implies ege 1$, $n=2 implies e^2notge 8$, $n=3 implies e^3notge 27$, $n=4 implies e^4notge 64$,$n=5 implies e^5ge 125$
- induction step: assume true $e^k ge k^3$ for some $k$ then
$$e^{k+1}=ecdot e^k ge ecdot k^3ge 2cdot k^3stackrel{?}ge (k+1)^3$$
and the latter is true indeed
$$2cdot k^3ge (k+1)^3$$
$$k(k^2-3k-3)ge 1, quad kge 4$$
$endgroup$
add a comment |
$begingroup$
Your application is correct indeed also $frac{e^x}{2x}$ is in the form $frac{infty}{infty}$ while the last one is not an indeterminate form and the limit is indeed infinity.
As an alternative note that eventually $e^xge x^3$ and then
$$frac{e^x}{x^2}ge frac{x^3}{x^2}ge xto infty$$
We can prove that also by induction, that is $e^n ge n^3$
- base case: $n=1 implies ege 1$, $n=2 implies e^2notge 8$, $n=3 implies e^3notge 27$, $n=4 implies e^4notge 64$,$n=5 implies e^5ge 125$
- induction step: assume true $e^k ge k^3$ for some $k$ then
$$e^{k+1}=ecdot e^k ge ecdot k^3ge 2cdot k^3stackrel{?}ge (k+1)^3$$
and the latter is true indeed
$$2cdot k^3ge (k+1)^3$$
$$k(k^2-3k-3)ge 1, quad kge 4$$
$endgroup$
Your application is correct indeed also $frac{e^x}{2x}$ is in the form $frac{infty}{infty}$ while the last one is not an indeterminate form and the limit is indeed infinity.
As an alternative note that eventually $e^xge x^3$ and then
$$frac{e^x}{x^2}ge frac{x^3}{x^2}ge xto infty$$
We can prove that also by induction, that is $e^n ge n^3$
- base case: $n=1 implies ege 1$, $n=2 implies e^2notge 8$, $n=3 implies e^3notge 27$, $n=4 implies e^4notge 64$,$n=5 implies e^5ge 125$
- induction step: assume true $e^k ge k^3$ for some $k$ then
$$e^{k+1}=ecdot e^k ge ecdot k^3ge 2cdot k^3stackrel{?}ge (k+1)^3$$
and the latter is true indeed
$$2cdot k^3ge (k+1)^3$$
$$k(k^2-3k-3)ge 1, quad kge 4$$
edited Dec 16 '18 at 11:29
answered Dec 16 '18 at 10:57
gimusigimusi
93k84494
93k84494
add a comment |
add a comment |
$begingroup$
Note that $infty$ is not an intermediate form. Simply put :
$$lim_{x to infty} frac{e^x}{2} = frac{1}{2}lim_{x to infty} e^x =infty$$
Indeterminate forms are typically considered to be :
$$frac{0}{0}, frac{infty}{infty}, 0 cdot infty, 1^infty, infty - infty, 0^infty,infty^0$$
$endgroup$
$begingroup$
I guess you intended to write "indeterminate", not "intermediate"
$endgroup$
– jjagmath
Dec 16 '18 at 11:37
$begingroup$
@jjagmath Thanks!
$endgroup$
– Rebellos
Dec 16 '18 at 11:37
add a comment |
$begingroup$
Note that $infty$ is not an intermediate form. Simply put :
$$lim_{x to infty} frac{e^x}{2} = frac{1}{2}lim_{x to infty} e^x =infty$$
Indeterminate forms are typically considered to be :
$$frac{0}{0}, frac{infty}{infty}, 0 cdot infty, 1^infty, infty - infty, 0^infty,infty^0$$
$endgroup$
$begingroup$
I guess you intended to write "indeterminate", not "intermediate"
$endgroup$
– jjagmath
Dec 16 '18 at 11:37
$begingroup$
@jjagmath Thanks!
$endgroup$
– Rebellos
Dec 16 '18 at 11:37
add a comment |
$begingroup$
Note that $infty$ is not an intermediate form. Simply put :
$$lim_{x to infty} frac{e^x}{2} = frac{1}{2}lim_{x to infty} e^x =infty$$
Indeterminate forms are typically considered to be :
$$frac{0}{0}, frac{infty}{infty}, 0 cdot infty, 1^infty, infty - infty, 0^infty,infty^0$$
$endgroup$
Note that $infty$ is not an intermediate form. Simply put :
$$lim_{x to infty} frac{e^x}{2} = frac{1}{2}lim_{x to infty} e^x =infty$$
Indeterminate forms are typically considered to be :
$$frac{0}{0}, frac{infty}{infty}, 0 cdot infty, 1^infty, infty - infty, 0^infty,infty^0$$
edited Dec 16 '18 at 11:37
answered Dec 16 '18 at 11:23
RebellosRebellos
15.3k31250
15.3k31250
$begingroup$
I guess you intended to write "indeterminate", not "intermediate"
$endgroup$
– jjagmath
Dec 16 '18 at 11:37
$begingroup$
@jjagmath Thanks!
$endgroup$
– Rebellos
Dec 16 '18 at 11:37
add a comment |
$begingroup$
I guess you intended to write "indeterminate", not "intermediate"
$endgroup$
– jjagmath
Dec 16 '18 at 11:37
$begingroup$
@jjagmath Thanks!
$endgroup$
– Rebellos
Dec 16 '18 at 11:37
$begingroup$
I guess you intended to write "indeterminate", not "intermediate"
$endgroup$
– jjagmath
Dec 16 '18 at 11:37
$begingroup$
I guess you intended to write "indeterminate", not "intermediate"
$endgroup$
– jjagmath
Dec 16 '18 at 11:37
$begingroup$
@jjagmath Thanks!
$endgroup$
– Rebellos
Dec 16 '18 at 11:37
$begingroup$
@jjagmath Thanks!
$endgroup$
– Rebellos
Dec 16 '18 at 11:37
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042468%2findeterminate-form-and-lhospital-rule%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$infty$ is not indeterminate form (see here)[en.wikipedia.org/wiki/Indeterminate_form]
$endgroup$
– Viktor Glombik
Dec 16 '18 at 10:58