How to transform an expression into a form involving the trace of a product of two matrices
In page 594 of Bishop's PRML, the following equation is implied:
$$
-frac{1}{2}sum(mathbf{x}_n-mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n-mathbf{bar{x}}) = -frac{N}{2}mathrm{Tr}(mathbf{C}^{-1}mathbf{S})
$$
where
$$
mathbf{S} = frac{1}{N}sum(mathbf{x}_n-mathbf{bar{x}})(mathbf{x}_n-mathbf{bar{x}})^T
$$
,$mathbf{C}$ is a symmetric matrix and $mathbf{bar{x}} = frac{sum_{n=1}^Nmathbf{x}_n}{N}$.
I want to derive this equation myself. But I'm not sure how to do it. Could someone show why the equation holds?
linear-algebra
add a comment |
In page 594 of Bishop's PRML, the following equation is implied:
$$
-frac{1}{2}sum(mathbf{x}_n-mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n-mathbf{bar{x}}) = -frac{N}{2}mathrm{Tr}(mathbf{C}^{-1}mathbf{S})
$$
where
$$
mathbf{S} = frac{1}{N}sum(mathbf{x}_n-mathbf{bar{x}})(mathbf{x}_n-mathbf{bar{x}})^T
$$
,$mathbf{C}$ is a symmetric matrix and $mathbf{bar{x}} = frac{sum_{n=1}^Nmathbf{x}_n}{N}$.
I want to derive this equation myself. But I'm not sure how to do it. Could someone show why the equation holds?
linear-algebra
I have taken the liberty to modify your title which was "uninformative".
– Jean Marie
1 hour ago
add a comment |
In page 594 of Bishop's PRML, the following equation is implied:
$$
-frac{1}{2}sum(mathbf{x}_n-mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n-mathbf{bar{x}}) = -frac{N}{2}mathrm{Tr}(mathbf{C}^{-1}mathbf{S})
$$
where
$$
mathbf{S} = frac{1}{N}sum(mathbf{x}_n-mathbf{bar{x}})(mathbf{x}_n-mathbf{bar{x}})^T
$$
,$mathbf{C}$ is a symmetric matrix and $mathbf{bar{x}} = frac{sum_{n=1}^Nmathbf{x}_n}{N}$.
I want to derive this equation myself. But I'm not sure how to do it. Could someone show why the equation holds?
linear-algebra
In page 594 of Bishop's PRML, the following equation is implied:
$$
-frac{1}{2}sum(mathbf{x}_n-mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n-mathbf{bar{x}}) = -frac{N}{2}mathrm{Tr}(mathbf{C}^{-1}mathbf{S})
$$
where
$$
mathbf{S} = frac{1}{N}sum(mathbf{x}_n-mathbf{bar{x}})(mathbf{x}_n-mathbf{bar{x}})^T
$$
,$mathbf{C}$ is a symmetric matrix and $mathbf{bar{x}} = frac{sum_{n=1}^Nmathbf{x}_n}{N}$.
I want to derive this equation myself. But I'm not sure how to do it. Could someone show why the equation holds?
linear-algebra
linear-algebra
edited 1 hour ago
Jean Marie
28.8k41949
28.8k41949
asked 8 hours ago
Sandi
243112
243112
I have taken the liberty to modify your title which was "uninformative".
– Jean Marie
1 hour ago
add a comment |
I have taken the liberty to modify your title which was "uninformative".
– Jean Marie
1 hour ago
I have taken the liberty to modify your title which was "uninformative".
– Jean Marie
1 hour ago
I have taken the liberty to modify your title which was "uninformative".
– Jean Marie
1 hour ago
add a comment |
2 Answers
2
active
oldest
votes
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
add a comment |
With the help of Siong Thye Goh, I did the following:
begin{align}
frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
8 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057651%2fhow-to-transform-an-expression-into-a-form-involving-the-trace-of-a-product-of-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
add a comment |
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
add a comment |
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
edited 8 hours ago
Bernard
118k639112
118k639112
answered 8 hours ago
Siong Thye Goh
99.3k1464117
99.3k1464117
add a comment |
add a comment |
With the help of Siong Thye Goh, I did the following:
begin{align}
frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
8 hours ago
add a comment |
With the help of Siong Thye Goh, I did the following:
begin{align}
frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
8 hours ago
add a comment |
With the help of Siong Thye Goh, I did the following:
begin{align}
frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
With the help of Siong Thye Goh, I did the following:
begin{align}
frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
answered 8 hours ago
Sandi
243112
243112
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
8 hours ago
add a comment |
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
8 hours ago
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
8 hours ago
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
8 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057651%2fhow-to-transform-an-expression-into-a-form-involving-the-trace-of-a-product-of-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I have taken the liberty to modify your title which was "uninformative".
– Jean Marie
1 hour ago