Proving that $Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert$ defines a norm on $B(X,Y). $
$begingroup$
Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y,$ normed linear maps. Then, $Vert cdot Vert,$ defined by $Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert,$ for arbitrary $Tin B(X,Y), $ is a norm on $B(X,Y). $
we have for arbitrary $Tin B(X,Y), $
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
MY TRIAL
1.
begin{align} Vert T Vert =0&iff suplimits_{Vert x Vertleq 1}Vert T x Vert =0iff Vert T x Vert =0,;;forall ,xin X, ,Tin B(X,Y)\& iff T x=0,;;forall ,xin X, ,Tin B(X,Y) \& iff T =0,;;forall , ,Tin B(X,Y)end{align}
2.
begin{align} Vert kT Vert =& suplimits_{Vert x Vertleq 1}Vert k T x Vert \=& |k|suplimits_{Vert x Vertleq 1}Vert T x Vert \=& |k|Vert T Vert,;;forall ,,kin K, ,Tin B(X,Y)end{align}
3.
begin{align} Vert T+S Vert =& suplimits_{Vert x Vertleq 1}Vert T x + S x Vert \leq & suplimits_{Vert x Vertleq 1}left(Vert T x Vert + Vert S x Vert right) \=&suplimits_{Vert x Vertleq 1}Vert T x Vert +suplimits_{Vert x Vertleq 1} Vert S x Vert \=&Vert T Vert+Vert S Vert,;;forall ,T,Sin B(X,Y)end{align}
Kindly help check if this is correct. If not, corrections and alternative proofs will be highly welcome.
functional-analysis norm normed-spaces
$endgroup$
add a comment |
$begingroup$
Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y,$ normed linear maps. Then, $Vert cdot Vert,$ defined by $Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert,$ for arbitrary $Tin B(X,Y), $ is a norm on $B(X,Y). $
we have for arbitrary $Tin B(X,Y), $
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
MY TRIAL
1.
begin{align} Vert T Vert =0&iff suplimits_{Vert x Vertleq 1}Vert T x Vert =0iff Vert T x Vert =0,;;forall ,xin X, ,Tin B(X,Y)\& iff T x=0,;;forall ,xin X, ,Tin B(X,Y) \& iff T =0,;;forall , ,Tin B(X,Y)end{align}
2.
begin{align} Vert kT Vert =& suplimits_{Vert x Vertleq 1}Vert k T x Vert \=& |k|suplimits_{Vert x Vertleq 1}Vert T x Vert \=& |k|Vert T Vert,;;forall ,,kin K, ,Tin B(X,Y)end{align}
3.
begin{align} Vert T+S Vert =& suplimits_{Vert x Vertleq 1}Vert T x + S x Vert \leq & suplimits_{Vert x Vertleq 1}left(Vert T x Vert + Vert S x Vert right) \=&suplimits_{Vert x Vertleq 1}Vert T x Vert +suplimits_{Vert x Vertleq 1} Vert S x Vert \=&Vert T Vert+Vert S Vert,;;forall ,T,Sin B(X,Y)end{align}
Kindly help check if this is correct. If not, corrections and alternative proofs will be highly welcome.
functional-analysis norm normed-spaces
$endgroup$
add a comment |
$begingroup$
Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y,$ normed linear maps. Then, $Vert cdot Vert,$ defined by $Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert,$ for arbitrary $Tin B(X,Y), $ is a norm on $B(X,Y). $
we have for arbitrary $Tin B(X,Y), $
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
MY TRIAL
1.
begin{align} Vert T Vert =0&iff suplimits_{Vert x Vertleq 1}Vert T x Vert =0iff Vert T x Vert =0,;;forall ,xin X, ,Tin B(X,Y)\& iff T x=0,;;forall ,xin X, ,Tin B(X,Y) \& iff T =0,;;forall , ,Tin B(X,Y)end{align}
2.
begin{align} Vert kT Vert =& suplimits_{Vert x Vertleq 1}Vert k T x Vert \=& |k|suplimits_{Vert x Vertleq 1}Vert T x Vert \=& |k|Vert T Vert,;;forall ,,kin K, ,Tin B(X,Y)end{align}
3.
begin{align} Vert T+S Vert =& suplimits_{Vert x Vertleq 1}Vert T x + S x Vert \leq & suplimits_{Vert x Vertleq 1}left(Vert T x Vert + Vert S x Vert right) \=&suplimits_{Vert x Vertleq 1}Vert T x Vert +suplimits_{Vert x Vertleq 1} Vert S x Vert \=&Vert T Vert+Vert S Vert,;;forall ,T,Sin B(X,Y)end{align}
Kindly help check if this is correct. If not, corrections and alternative proofs will be highly welcome.
functional-analysis norm normed-spaces
$endgroup$
Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y,$ normed linear maps. Then, $Vert cdot Vert,$ defined by $Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert,$ for arbitrary $Tin B(X,Y), $ is a norm on $B(X,Y). $
we have for arbitrary $Tin B(X,Y), $
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
MY TRIAL
1.
begin{align} Vert T Vert =0&iff suplimits_{Vert x Vertleq 1}Vert T x Vert =0iff Vert T x Vert =0,;;forall ,xin X, ,Tin B(X,Y)\& iff T x=0,;;forall ,xin X, ,Tin B(X,Y) \& iff T =0,;;forall , ,Tin B(X,Y)end{align}
2.
begin{align} Vert kT Vert =& suplimits_{Vert x Vertleq 1}Vert k T x Vert \=& |k|suplimits_{Vert x Vertleq 1}Vert T x Vert \=& |k|Vert T Vert,;;forall ,,kin K, ,Tin B(X,Y)end{align}
3.
begin{align} Vert T+S Vert =& suplimits_{Vert x Vertleq 1}Vert T x + S x Vert \leq & suplimits_{Vert x Vertleq 1}left(Vert T x Vert + Vert S x Vert right) \=&suplimits_{Vert x Vertleq 1}Vert T x Vert +suplimits_{Vert x Vertleq 1} Vert S x Vert \=&Vert T Vert+Vert S Vert,;;forall ,T,Sin B(X,Y)end{align}
Kindly help check if this is correct. If not, corrections and alternative proofs will be highly welcome.
functional-analysis norm normed-spaces
functional-analysis norm normed-spaces
asked Dec 18 '18 at 9:20
Omojola MichealOmojola Micheal
1,986424
1,986424
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your proof is fine except that you have to fill in some details on why $sup{|Tx|:|x|leq 1}$ implies $Tx=0$ for all $x$. You get $Tx=0$ for $|x|leq 1$ and then you have to argue that if $x neq 0$ then $frac x {|x|}$ has norm $1$ so $Tfrac x {|x|}=0$; finally, linearity of $T$ gives $frac {Tx} {|x|}=0$, so $Tx=0$.
$endgroup$
$begingroup$
Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
$endgroup$
– Omojola Micheal
Dec 18 '18 at 12:06
$begingroup$
Isn't it obvious that $T=0$ implies $|T|=0$?
$endgroup$
– Kavi Rama Murthy
Dec 18 '18 at 23:13
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044939%2fproving-that-vert-t-vert-sup-limits-vert-x-vert-leq-1-vert-t-x-vert-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your proof is fine except that you have to fill in some details on why $sup{|Tx|:|x|leq 1}$ implies $Tx=0$ for all $x$. You get $Tx=0$ for $|x|leq 1$ and then you have to argue that if $x neq 0$ then $frac x {|x|}$ has norm $1$ so $Tfrac x {|x|}=0$; finally, linearity of $T$ gives $frac {Tx} {|x|}=0$, so $Tx=0$.
$endgroup$
$begingroup$
Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
$endgroup$
– Omojola Micheal
Dec 18 '18 at 12:06
$begingroup$
Isn't it obvious that $T=0$ implies $|T|=0$?
$endgroup$
– Kavi Rama Murthy
Dec 18 '18 at 23:13
add a comment |
$begingroup$
Your proof is fine except that you have to fill in some details on why $sup{|Tx|:|x|leq 1}$ implies $Tx=0$ for all $x$. You get $Tx=0$ for $|x|leq 1$ and then you have to argue that if $x neq 0$ then $frac x {|x|}$ has norm $1$ so $Tfrac x {|x|}=0$; finally, linearity of $T$ gives $frac {Tx} {|x|}=0$, so $Tx=0$.
$endgroup$
$begingroup$
Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
$endgroup$
– Omojola Micheal
Dec 18 '18 at 12:06
$begingroup$
Isn't it obvious that $T=0$ implies $|T|=0$?
$endgroup$
– Kavi Rama Murthy
Dec 18 '18 at 23:13
add a comment |
$begingroup$
Your proof is fine except that you have to fill in some details on why $sup{|Tx|:|x|leq 1}$ implies $Tx=0$ for all $x$. You get $Tx=0$ for $|x|leq 1$ and then you have to argue that if $x neq 0$ then $frac x {|x|}$ has norm $1$ so $Tfrac x {|x|}=0$; finally, linearity of $T$ gives $frac {Tx} {|x|}=0$, so $Tx=0$.
$endgroup$
Your proof is fine except that you have to fill in some details on why $sup{|Tx|:|x|leq 1}$ implies $Tx=0$ for all $x$. You get $Tx=0$ for $|x|leq 1$ and then you have to argue that if $x neq 0$ then $frac x {|x|}$ has norm $1$ so $Tfrac x {|x|}=0$; finally, linearity of $T$ gives $frac {Tx} {|x|}=0$, so $Tx=0$.
answered Dec 18 '18 at 9:24
Kavi Rama MurthyKavi Rama Murthy
69.7k53170
69.7k53170
$begingroup$
Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
$endgroup$
– Omojola Micheal
Dec 18 '18 at 12:06
$begingroup$
Isn't it obvious that $T=0$ implies $|T|=0$?
$endgroup$
– Kavi Rama Murthy
Dec 18 '18 at 23:13
add a comment |
$begingroup$
Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
$endgroup$
– Omojola Micheal
Dec 18 '18 at 12:06
$begingroup$
Isn't it obvious that $T=0$ implies $|T|=0$?
$endgroup$
– Kavi Rama Murthy
Dec 18 '18 at 23:13
$begingroup$
Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
$endgroup$
– Omojola Micheal
Dec 18 '18 at 12:06
$begingroup$
Please, how do I get an "if and only if" statement from this? From what you've stated, I think I can only get implication from this. Can you, please, help?
$endgroup$
– Omojola Micheal
Dec 18 '18 at 12:06
$begingroup$
Isn't it obvious that $T=0$ implies $|T|=0$?
$endgroup$
– Kavi Rama Murthy
Dec 18 '18 at 23:13
$begingroup$
Isn't it obvious that $T=0$ implies $|T|=0$?
$endgroup$
– Kavi Rama Murthy
Dec 18 '18 at 23:13
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044939%2fproving-that-vert-t-vert-sup-limits-vert-x-vert-leq-1-vert-t-x-vert-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown