How to evaluate $int frac{x^3}{sqrt {x^2+1}}dx$
$begingroup$
Evaluate $$int frac{x^3}{sqrt {x^2+1}}dx$$
Let $u={x^2}+1$. Then $x=sqrt {u-1}$ and $dx=frac{1}{2sqrt{u-1}}du$.
Therefore, $$int frac{(u-1)sqrt{u-1}}{sqrt u}frac{1}{2sqrt {u-1}}du$$
$$=frac{1}{2}int {sqrt u}-{frac {1}{sqrt u}du}$$
$$={frac{2}{3}}{{(x^2+1})}^{3/2}-{frac{1}{2}}{sqrt {x^2+1}}+C$$for some constant $C$
integration proof-verification
$endgroup$
add a comment |
$begingroup$
Evaluate $$int frac{x^3}{sqrt {x^2+1}}dx$$
Let $u={x^2}+1$. Then $x=sqrt {u-1}$ and $dx=frac{1}{2sqrt{u-1}}du$.
Therefore, $$int frac{(u-1)sqrt{u-1}}{sqrt u}frac{1}{2sqrt {u-1}}du$$
$$=frac{1}{2}int {sqrt u}-{frac {1}{sqrt u}du}$$
$$={frac{2}{3}}{{(x^2+1})}^{3/2}-{frac{1}{2}}{sqrt {x^2+1}}+C$$for some constant $C$
integration proof-verification
$endgroup$
$begingroup$
Thank your advice. I correct it.
$endgroup$
– Maggie
Dec 20 '18 at 16:38
add a comment |
$begingroup$
Evaluate $$int frac{x^3}{sqrt {x^2+1}}dx$$
Let $u={x^2}+1$. Then $x=sqrt {u-1}$ and $dx=frac{1}{2sqrt{u-1}}du$.
Therefore, $$int frac{(u-1)sqrt{u-1}}{sqrt u}frac{1}{2sqrt {u-1}}du$$
$$=frac{1}{2}int {sqrt u}-{frac {1}{sqrt u}du}$$
$$={frac{2}{3}}{{(x^2+1})}^{3/2}-{frac{1}{2}}{sqrt {x^2+1}}+C$$for some constant $C$
integration proof-verification
$endgroup$
Evaluate $$int frac{x^3}{sqrt {x^2+1}}dx$$
Let $u={x^2}+1$. Then $x=sqrt {u-1}$ and $dx=frac{1}{2sqrt{u-1}}du$.
Therefore, $$int frac{(u-1)sqrt{u-1}}{sqrt u}frac{1}{2sqrt {u-1}}du$$
$$=frac{1}{2}int {sqrt u}-{frac {1}{sqrt u}du}$$
$$={frac{2}{3}}{{(x^2+1})}^{3/2}-{frac{1}{2}}{sqrt {x^2+1}}+C$$for some constant $C$
integration proof-verification
integration proof-verification
edited Dec 20 '18 at 16:48
J.G.
33.1k23252
33.1k23252
asked Dec 20 '18 at 16:30
MaggieMaggie
1058
1058
$begingroup$
Thank your advice. I correct it.
$endgroup$
– Maggie
Dec 20 '18 at 16:38
add a comment |
$begingroup$
Thank your advice. I correct it.
$endgroup$
– Maggie
Dec 20 '18 at 16:38
$begingroup$
Thank your advice. I correct it.
$endgroup$
– Maggie
Dec 20 '18 at 16:38
$begingroup$
Thank your advice. I correct it.
$endgroup$
– Maggie
Dec 20 '18 at 16:38
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
You made a small mistake on the last line; integrating $frac{1}{2}u^{1/2}-frac{1}{2}u^{-1/2}$ should give $frac{1}{3}u^{3/2}-u^{1/2}+C$, not $frac{2}{3}u^{3/2}-frac{1}{2}u^{1/2}+C$. When you want to double-check an antiderivative, it's worth differentiating it to see if you get the expected integrand.
$endgroup$
$begingroup$
Sorry. I didn't notice it. Thank a lot!
$endgroup$
– Maggie
Dec 20 '18 at 16:42
add a comment |
$begingroup$
Here I give you an alternative approach. If we make $x = sinh(u)$, we get
begin{align*}
intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x & = intsinh^{3}(u)mathrm{d}u = int(cosh^{2}(u)-1)sinh(u)mathrm{d}u\
& = frac{cosh^{3}(u)}{3} - cosh(u) + K
end{align*}
Since $x = sinh(u) = pmsqrt{cosh^{2}(u)-1}$, we conclude that $cosh(u) = sqrt{x^{2} + 1}$. Finally, it results that
begin{align*}
intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x = frac{(x^{2}+1)^{3/2}}{3} - sqrt{x^{2}+1} + K
end{align*}
$endgroup$
1
$begingroup$
OH, I didn't find this method.It's helpful for me.Thank a lot.
$endgroup$
– Maggie
Dec 20 '18 at 16:49
add a comment |
$begingroup$
Just to give another approach, let $x^2+1=u^2$, in which case $xdx=udu$ and we have
$$int{x^3oversqrt{x^2+1}}dx=int{x^2cdot xdxoversqrt{x^2+1}}=int{(u^2-1)uduover u}=int(u^2-1)du={1over3}u^3-u+C\={1over3}(x^2+1)^{3/2}-(x^2+1)^{1/2}+C$$
The main virtue (if any) of this approach is that it gets rid of the square root symbol for the integration step.
$endgroup$
add a comment |
$begingroup$
Method 1:
Another approach using trigonometric substitutions
begin{equation}
I =int frac{x^3}{sqrt {x^2+1}}dx
end{equation}
Here let $x = tan(theta)$ we arrive at:
begin{align}
I &=int frac{tan^3(theta)}{sqrt {tan^2(theta)+1}}sec^2(theta):dtheta = int frac{tan^3(theta)}{sec(theta)}sec^2(theta):dtheta\
&= int tan^3(theta)sec(theta):dtheta = int sec(theta)tan(theta) tan^2(theta):dtheta \
&= int sec(theta)tan(theta) left(sec^2(theta) - 1right):dtheta
end{align}
Now let $u = sec(theta)$ to yield:
begin{equation}
int sec(theta)tan(theta)left(u^2 - 1right) frac{:dtheta}{sec(theta)tan(theta)} = int u^2 - 1 :du = frac{u^3}{3} - u + C
end{equation}
Where $C$ is the constant of integration.
Now $u = sec(theta)$ and $x = tan(theta)$ and so $u = sec(arctan(x)) = sqrt{x^2 + 1}$
Thus,
begin{equation}
I =int frac{x^3}{sqrt {x^2+1}}dx = frac{1}{3}left( sqrt {x^2+1}right)^3 - sqrt {x^2+1} + C = frac{1}{3}left(x^2+1right)^{frac{3}{2}} - sqrt {x^2+1} + C
end{equation}
Method 2:
begin{align}
I &=int frac{x^3}{sqrt {x^2+1}}dx = int x cdot frac{x^2}{sqrt {x^2+1}}dx \
&= int x cdot frac{x^2 + 1 - 1}{sqrt {x^2+1}}dx = int x left( sqrt {x^2+1} - frac{1}{sqrt{x^2+1}}right)dx
end{align}
Here let $u = x^2 + 1$:
begin{align}
I &= int x left( sqrt {u} - frac{1}{sqrt{u}}right)frac{du}{2x} = frac{1}{2}left[int left( u^{frac{1}{2}} - u^{-frac{1}{2}}right)duright] = frac{1}{2}left[frac{ u^{frac{3}{2}}}{frac{3}{2}} + frac{ u^{frac{1}{2}}}{frac{1}{2}} right] + C \
&= frac{1}{3}u^{frac{3}{2}} + u^{frac{1}{2}} + C = frac{1}{3}left(x^2 + 1right)^{frac{3}{2}} + left(x^2 + 1right)^{frac{1}{2}} + C
end{align}
Where $C$ is the constant of integration.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047713%2fhow-to-evaluate-int-fracx3-sqrt-x21dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You made a small mistake on the last line; integrating $frac{1}{2}u^{1/2}-frac{1}{2}u^{-1/2}$ should give $frac{1}{3}u^{3/2}-u^{1/2}+C$, not $frac{2}{3}u^{3/2}-frac{1}{2}u^{1/2}+C$. When you want to double-check an antiderivative, it's worth differentiating it to see if you get the expected integrand.
$endgroup$
$begingroup$
Sorry. I didn't notice it. Thank a lot!
$endgroup$
– Maggie
Dec 20 '18 at 16:42
add a comment |
$begingroup$
You made a small mistake on the last line; integrating $frac{1}{2}u^{1/2}-frac{1}{2}u^{-1/2}$ should give $frac{1}{3}u^{3/2}-u^{1/2}+C$, not $frac{2}{3}u^{3/2}-frac{1}{2}u^{1/2}+C$. When you want to double-check an antiderivative, it's worth differentiating it to see if you get the expected integrand.
$endgroup$
$begingroup$
Sorry. I didn't notice it. Thank a lot!
$endgroup$
– Maggie
Dec 20 '18 at 16:42
add a comment |
$begingroup$
You made a small mistake on the last line; integrating $frac{1}{2}u^{1/2}-frac{1}{2}u^{-1/2}$ should give $frac{1}{3}u^{3/2}-u^{1/2}+C$, not $frac{2}{3}u^{3/2}-frac{1}{2}u^{1/2}+C$. When you want to double-check an antiderivative, it's worth differentiating it to see if you get the expected integrand.
$endgroup$
You made a small mistake on the last line; integrating $frac{1}{2}u^{1/2}-frac{1}{2}u^{-1/2}$ should give $frac{1}{3}u^{3/2}-u^{1/2}+C$, not $frac{2}{3}u^{3/2}-frac{1}{2}u^{1/2}+C$. When you want to double-check an antiderivative, it's worth differentiating it to see if you get the expected integrand.
answered Dec 20 '18 at 16:36
J.G.J.G.
33.1k23252
33.1k23252
$begingroup$
Sorry. I didn't notice it. Thank a lot!
$endgroup$
– Maggie
Dec 20 '18 at 16:42
add a comment |
$begingroup$
Sorry. I didn't notice it. Thank a lot!
$endgroup$
– Maggie
Dec 20 '18 at 16:42
$begingroup$
Sorry. I didn't notice it. Thank a lot!
$endgroup$
– Maggie
Dec 20 '18 at 16:42
$begingroup$
Sorry. I didn't notice it. Thank a lot!
$endgroup$
– Maggie
Dec 20 '18 at 16:42
add a comment |
$begingroup$
Here I give you an alternative approach. If we make $x = sinh(u)$, we get
begin{align*}
intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x & = intsinh^{3}(u)mathrm{d}u = int(cosh^{2}(u)-1)sinh(u)mathrm{d}u\
& = frac{cosh^{3}(u)}{3} - cosh(u) + K
end{align*}
Since $x = sinh(u) = pmsqrt{cosh^{2}(u)-1}$, we conclude that $cosh(u) = sqrt{x^{2} + 1}$. Finally, it results that
begin{align*}
intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x = frac{(x^{2}+1)^{3/2}}{3} - sqrt{x^{2}+1} + K
end{align*}
$endgroup$
1
$begingroup$
OH, I didn't find this method.It's helpful for me.Thank a lot.
$endgroup$
– Maggie
Dec 20 '18 at 16:49
add a comment |
$begingroup$
Here I give you an alternative approach. If we make $x = sinh(u)$, we get
begin{align*}
intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x & = intsinh^{3}(u)mathrm{d}u = int(cosh^{2}(u)-1)sinh(u)mathrm{d}u\
& = frac{cosh^{3}(u)}{3} - cosh(u) + K
end{align*}
Since $x = sinh(u) = pmsqrt{cosh^{2}(u)-1}$, we conclude that $cosh(u) = sqrt{x^{2} + 1}$. Finally, it results that
begin{align*}
intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x = frac{(x^{2}+1)^{3/2}}{3} - sqrt{x^{2}+1} + K
end{align*}
$endgroup$
1
$begingroup$
OH, I didn't find this method.It's helpful for me.Thank a lot.
$endgroup$
– Maggie
Dec 20 '18 at 16:49
add a comment |
$begingroup$
Here I give you an alternative approach. If we make $x = sinh(u)$, we get
begin{align*}
intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x & = intsinh^{3}(u)mathrm{d}u = int(cosh^{2}(u)-1)sinh(u)mathrm{d}u\
& = frac{cosh^{3}(u)}{3} - cosh(u) + K
end{align*}
Since $x = sinh(u) = pmsqrt{cosh^{2}(u)-1}$, we conclude that $cosh(u) = sqrt{x^{2} + 1}$. Finally, it results that
begin{align*}
intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x = frac{(x^{2}+1)^{3/2}}{3} - sqrt{x^{2}+1} + K
end{align*}
$endgroup$
Here I give you an alternative approach. If we make $x = sinh(u)$, we get
begin{align*}
intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x & = intsinh^{3}(u)mathrm{d}u = int(cosh^{2}(u)-1)sinh(u)mathrm{d}u\
& = frac{cosh^{3}(u)}{3} - cosh(u) + K
end{align*}
Since $x = sinh(u) = pmsqrt{cosh^{2}(u)-1}$, we conclude that $cosh(u) = sqrt{x^{2} + 1}$. Finally, it results that
begin{align*}
intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x = frac{(x^{2}+1)^{3/2}}{3} - sqrt{x^{2}+1} + K
end{align*}
edited Dec 20 '18 at 16:54
answered Dec 20 '18 at 16:40
APC89APC89
2,371720
2,371720
1
$begingroup$
OH, I didn't find this method.It's helpful for me.Thank a lot.
$endgroup$
– Maggie
Dec 20 '18 at 16:49
add a comment |
1
$begingroup$
OH, I didn't find this method.It's helpful for me.Thank a lot.
$endgroup$
– Maggie
Dec 20 '18 at 16:49
1
1
$begingroup$
OH, I didn't find this method.It's helpful for me.Thank a lot.
$endgroup$
– Maggie
Dec 20 '18 at 16:49
$begingroup$
OH, I didn't find this method.It's helpful for me.Thank a lot.
$endgroup$
– Maggie
Dec 20 '18 at 16:49
add a comment |
$begingroup$
Just to give another approach, let $x^2+1=u^2$, in which case $xdx=udu$ and we have
$$int{x^3oversqrt{x^2+1}}dx=int{x^2cdot xdxoversqrt{x^2+1}}=int{(u^2-1)uduover u}=int(u^2-1)du={1over3}u^3-u+C\={1over3}(x^2+1)^{3/2}-(x^2+1)^{1/2}+C$$
The main virtue (if any) of this approach is that it gets rid of the square root symbol for the integration step.
$endgroup$
add a comment |
$begingroup$
Just to give another approach, let $x^2+1=u^2$, in which case $xdx=udu$ and we have
$$int{x^3oversqrt{x^2+1}}dx=int{x^2cdot xdxoversqrt{x^2+1}}=int{(u^2-1)uduover u}=int(u^2-1)du={1over3}u^3-u+C\={1over3}(x^2+1)^{3/2}-(x^2+1)^{1/2}+C$$
The main virtue (if any) of this approach is that it gets rid of the square root symbol for the integration step.
$endgroup$
add a comment |
$begingroup$
Just to give another approach, let $x^2+1=u^2$, in which case $xdx=udu$ and we have
$$int{x^3oversqrt{x^2+1}}dx=int{x^2cdot xdxoversqrt{x^2+1}}=int{(u^2-1)uduover u}=int(u^2-1)du={1over3}u^3-u+C\={1over3}(x^2+1)^{3/2}-(x^2+1)^{1/2}+C$$
The main virtue (if any) of this approach is that it gets rid of the square root symbol for the integration step.
$endgroup$
Just to give another approach, let $x^2+1=u^2$, in which case $xdx=udu$ and we have
$$int{x^3oversqrt{x^2+1}}dx=int{x^2cdot xdxoversqrt{x^2+1}}=int{(u^2-1)uduover u}=int(u^2-1)du={1over3}u^3-u+C\={1over3}(x^2+1)^{3/2}-(x^2+1)^{1/2}+C$$
The main virtue (if any) of this approach is that it gets rid of the square root symbol for the integration step.
answered Dec 20 '18 at 17:06
Barry CipraBarry Cipra
60.6k655129
60.6k655129
add a comment |
add a comment |
$begingroup$
Method 1:
Another approach using trigonometric substitutions
begin{equation}
I =int frac{x^3}{sqrt {x^2+1}}dx
end{equation}
Here let $x = tan(theta)$ we arrive at:
begin{align}
I &=int frac{tan^3(theta)}{sqrt {tan^2(theta)+1}}sec^2(theta):dtheta = int frac{tan^3(theta)}{sec(theta)}sec^2(theta):dtheta\
&= int tan^3(theta)sec(theta):dtheta = int sec(theta)tan(theta) tan^2(theta):dtheta \
&= int sec(theta)tan(theta) left(sec^2(theta) - 1right):dtheta
end{align}
Now let $u = sec(theta)$ to yield:
begin{equation}
int sec(theta)tan(theta)left(u^2 - 1right) frac{:dtheta}{sec(theta)tan(theta)} = int u^2 - 1 :du = frac{u^3}{3} - u + C
end{equation}
Where $C$ is the constant of integration.
Now $u = sec(theta)$ and $x = tan(theta)$ and so $u = sec(arctan(x)) = sqrt{x^2 + 1}$
Thus,
begin{equation}
I =int frac{x^3}{sqrt {x^2+1}}dx = frac{1}{3}left( sqrt {x^2+1}right)^3 - sqrt {x^2+1} + C = frac{1}{3}left(x^2+1right)^{frac{3}{2}} - sqrt {x^2+1} + C
end{equation}
Method 2:
begin{align}
I &=int frac{x^3}{sqrt {x^2+1}}dx = int x cdot frac{x^2}{sqrt {x^2+1}}dx \
&= int x cdot frac{x^2 + 1 - 1}{sqrt {x^2+1}}dx = int x left( sqrt {x^2+1} - frac{1}{sqrt{x^2+1}}right)dx
end{align}
Here let $u = x^2 + 1$:
begin{align}
I &= int x left( sqrt {u} - frac{1}{sqrt{u}}right)frac{du}{2x} = frac{1}{2}left[int left( u^{frac{1}{2}} - u^{-frac{1}{2}}right)duright] = frac{1}{2}left[frac{ u^{frac{3}{2}}}{frac{3}{2}} + frac{ u^{frac{1}{2}}}{frac{1}{2}} right] + C \
&= frac{1}{3}u^{frac{3}{2}} + u^{frac{1}{2}} + C = frac{1}{3}left(x^2 + 1right)^{frac{3}{2}} + left(x^2 + 1right)^{frac{1}{2}} + C
end{align}
Where $C$ is the constant of integration.
$endgroup$
add a comment |
$begingroup$
Method 1:
Another approach using trigonometric substitutions
begin{equation}
I =int frac{x^3}{sqrt {x^2+1}}dx
end{equation}
Here let $x = tan(theta)$ we arrive at:
begin{align}
I &=int frac{tan^3(theta)}{sqrt {tan^2(theta)+1}}sec^2(theta):dtheta = int frac{tan^3(theta)}{sec(theta)}sec^2(theta):dtheta\
&= int tan^3(theta)sec(theta):dtheta = int sec(theta)tan(theta) tan^2(theta):dtheta \
&= int sec(theta)tan(theta) left(sec^2(theta) - 1right):dtheta
end{align}
Now let $u = sec(theta)$ to yield:
begin{equation}
int sec(theta)tan(theta)left(u^2 - 1right) frac{:dtheta}{sec(theta)tan(theta)} = int u^2 - 1 :du = frac{u^3}{3} - u + C
end{equation}
Where $C$ is the constant of integration.
Now $u = sec(theta)$ and $x = tan(theta)$ and so $u = sec(arctan(x)) = sqrt{x^2 + 1}$
Thus,
begin{equation}
I =int frac{x^3}{sqrt {x^2+1}}dx = frac{1}{3}left( sqrt {x^2+1}right)^3 - sqrt {x^2+1} + C = frac{1}{3}left(x^2+1right)^{frac{3}{2}} - sqrt {x^2+1} + C
end{equation}
Method 2:
begin{align}
I &=int frac{x^3}{sqrt {x^2+1}}dx = int x cdot frac{x^2}{sqrt {x^2+1}}dx \
&= int x cdot frac{x^2 + 1 - 1}{sqrt {x^2+1}}dx = int x left( sqrt {x^2+1} - frac{1}{sqrt{x^2+1}}right)dx
end{align}
Here let $u = x^2 + 1$:
begin{align}
I &= int x left( sqrt {u} - frac{1}{sqrt{u}}right)frac{du}{2x} = frac{1}{2}left[int left( u^{frac{1}{2}} - u^{-frac{1}{2}}right)duright] = frac{1}{2}left[frac{ u^{frac{3}{2}}}{frac{3}{2}} + frac{ u^{frac{1}{2}}}{frac{1}{2}} right] + C \
&= frac{1}{3}u^{frac{3}{2}} + u^{frac{1}{2}} + C = frac{1}{3}left(x^2 + 1right)^{frac{3}{2}} + left(x^2 + 1right)^{frac{1}{2}} + C
end{align}
Where $C$ is the constant of integration.
$endgroup$
add a comment |
$begingroup$
Method 1:
Another approach using trigonometric substitutions
begin{equation}
I =int frac{x^3}{sqrt {x^2+1}}dx
end{equation}
Here let $x = tan(theta)$ we arrive at:
begin{align}
I &=int frac{tan^3(theta)}{sqrt {tan^2(theta)+1}}sec^2(theta):dtheta = int frac{tan^3(theta)}{sec(theta)}sec^2(theta):dtheta\
&= int tan^3(theta)sec(theta):dtheta = int sec(theta)tan(theta) tan^2(theta):dtheta \
&= int sec(theta)tan(theta) left(sec^2(theta) - 1right):dtheta
end{align}
Now let $u = sec(theta)$ to yield:
begin{equation}
int sec(theta)tan(theta)left(u^2 - 1right) frac{:dtheta}{sec(theta)tan(theta)} = int u^2 - 1 :du = frac{u^3}{3} - u + C
end{equation}
Where $C$ is the constant of integration.
Now $u = sec(theta)$ and $x = tan(theta)$ and so $u = sec(arctan(x)) = sqrt{x^2 + 1}$
Thus,
begin{equation}
I =int frac{x^3}{sqrt {x^2+1}}dx = frac{1}{3}left( sqrt {x^2+1}right)^3 - sqrt {x^2+1} + C = frac{1}{3}left(x^2+1right)^{frac{3}{2}} - sqrt {x^2+1} + C
end{equation}
Method 2:
begin{align}
I &=int frac{x^3}{sqrt {x^2+1}}dx = int x cdot frac{x^2}{sqrt {x^2+1}}dx \
&= int x cdot frac{x^2 + 1 - 1}{sqrt {x^2+1}}dx = int x left( sqrt {x^2+1} - frac{1}{sqrt{x^2+1}}right)dx
end{align}
Here let $u = x^2 + 1$:
begin{align}
I &= int x left( sqrt {u} - frac{1}{sqrt{u}}right)frac{du}{2x} = frac{1}{2}left[int left( u^{frac{1}{2}} - u^{-frac{1}{2}}right)duright] = frac{1}{2}left[frac{ u^{frac{3}{2}}}{frac{3}{2}} + frac{ u^{frac{1}{2}}}{frac{1}{2}} right] + C \
&= frac{1}{3}u^{frac{3}{2}} + u^{frac{1}{2}} + C = frac{1}{3}left(x^2 + 1right)^{frac{3}{2}} + left(x^2 + 1right)^{frac{1}{2}} + C
end{align}
Where $C$ is the constant of integration.
$endgroup$
Method 1:
Another approach using trigonometric substitutions
begin{equation}
I =int frac{x^3}{sqrt {x^2+1}}dx
end{equation}
Here let $x = tan(theta)$ we arrive at:
begin{align}
I &=int frac{tan^3(theta)}{sqrt {tan^2(theta)+1}}sec^2(theta):dtheta = int frac{tan^3(theta)}{sec(theta)}sec^2(theta):dtheta\
&= int tan^3(theta)sec(theta):dtheta = int sec(theta)tan(theta) tan^2(theta):dtheta \
&= int sec(theta)tan(theta) left(sec^2(theta) - 1right):dtheta
end{align}
Now let $u = sec(theta)$ to yield:
begin{equation}
int sec(theta)tan(theta)left(u^2 - 1right) frac{:dtheta}{sec(theta)tan(theta)} = int u^2 - 1 :du = frac{u^3}{3} - u + C
end{equation}
Where $C$ is the constant of integration.
Now $u = sec(theta)$ and $x = tan(theta)$ and so $u = sec(arctan(x)) = sqrt{x^2 + 1}$
Thus,
begin{equation}
I =int frac{x^3}{sqrt {x^2+1}}dx = frac{1}{3}left( sqrt {x^2+1}right)^3 - sqrt {x^2+1} + C = frac{1}{3}left(x^2+1right)^{frac{3}{2}} - sqrt {x^2+1} + C
end{equation}
Method 2:
begin{align}
I &=int frac{x^3}{sqrt {x^2+1}}dx = int x cdot frac{x^2}{sqrt {x^2+1}}dx \
&= int x cdot frac{x^2 + 1 - 1}{sqrt {x^2+1}}dx = int x left( sqrt {x^2+1} - frac{1}{sqrt{x^2+1}}right)dx
end{align}
Here let $u = x^2 + 1$:
begin{align}
I &= int x left( sqrt {u} - frac{1}{sqrt{u}}right)frac{du}{2x} = frac{1}{2}left[int left( u^{frac{1}{2}} - u^{-frac{1}{2}}right)duright] = frac{1}{2}left[frac{ u^{frac{3}{2}}}{frac{3}{2}} + frac{ u^{frac{1}{2}}}{frac{1}{2}} right] + C \
&= frac{1}{3}u^{frac{3}{2}} + u^{frac{1}{2}} + C = frac{1}{3}left(x^2 + 1right)^{frac{3}{2}} + left(x^2 + 1right)^{frac{1}{2}} + C
end{align}
Where $C$ is the constant of integration.
edited Dec 21 '18 at 4:46
answered Dec 21 '18 at 4:34
user150203
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047713%2fhow-to-evaluate-int-fracx3-sqrt-x21dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Thank your advice. I correct it.
$endgroup$
– Maggie
Dec 20 '18 at 16:38