Proving $sum_{k=0}^{n} {k choose a} {n-k choose b} = {n+1choose a+b+1}$












6












$begingroup$


Given two positive integers $a$ and $b$, prove that



$sum_{k=0}^{n} {k choose a} {n-k choose b} = {n+1choose a+b+1}$



I think there should be a good combinatorial proof for this, given the simplicity of the right-hand side... my hunch is to form all possible subsets of size $a+b+1$ by dividing the set into $k$ and $n-k$ elements, then choosing $a$ from the first, $b$ from the second, iterating over all values of $k$.



I can't quite make this work, so I've also been trying to rewrite ${n+1 choose a+b+1}$ to make it clear.



Open to any proof method, all help appreciated.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You can find a full combinatoric proof here: proofwiki.org/wiki/Sum_over_k_of_r-k_Choose_m_by_s%2Bk_Choose_n
    $endgroup$
    – kvantour
    Dec 20 '18 at 18:12
















6












$begingroup$


Given two positive integers $a$ and $b$, prove that



$sum_{k=0}^{n} {k choose a} {n-k choose b} = {n+1choose a+b+1}$



I think there should be a good combinatorial proof for this, given the simplicity of the right-hand side... my hunch is to form all possible subsets of size $a+b+1$ by dividing the set into $k$ and $n-k$ elements, then choosing $a$ from the first, $b$ from the second, iterating over all values of $k$.



I can't quite make this work, so I've also been trying to rewrite ${n+1 choose a+b+1}$ to make it clear.



Open to any proof method, all help appreciated.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You can find a full combinatoric proof here: proofwiki.org/wiki/Sum_over_k_of_r-k_Choose_m_by_s%2Bk_Choose_n
    $endgroup$
    – kvantour
    Dec 20 '18 at 18:12














6












6








6


1



$begingroup$


Given two positive integers $a$ and $b$, prove that



$sum_{k=0}^{n} {k choose a} {n-k choose b} = {n+1choose a+b+1}$



I think there should be a good combinatorial proof for this, given the simplicity of the right-hand side... my hunch is to form all possible subsets of size $a+b+1$ by dividing the set into $k$ and $n-k$ elements, then choosing $a$ from the first, $b$ from the second, iterating over all values of $k$.



I can't quite make this work, so I've also been trying to rewrite ${n+1 choose a+b+1}$ to make it clear.



Open to any proof method, all help appreciated.










share|cite|improve this question











$endgroup$




Given two positive integers $a$ and $b$, prove that



$sum_{k=0}^{n} {k choose a} {n-k choose b} = {n+1choose a+b+1}$



I think there should be a good combinatorial proof for this, given the simplicity of the right-hand side... my hunch is to form all possible subsets of size $a+b+1$ by dividing the set into $k$ and $n-k$ elements, then choosing $a$ from the first, $b$ from the second, iterating over all values of $k$.



I can't quite make this work, so I've also been trying to rewrite ${n+1 choose a+b+1}$ to make it clear.



Open to any proof method, all help appreciated.







combinatorics summation binomial-coefficients






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 20 '18 at 15:03









Namaste

1




1










asked Sep 25 '13 at 2:51









tlonuqbartlonuqbar

311




311












  • $begingroup$
    You can find a full combinatoric proof here: proofwiki.org/wiki/Sum_over_k_of_r-k_Choose_m_by_s%2Bk_Choose_n
    $endgroup$
    – kvantour
    Dec 20 '18 at 18:12


















  • $begingroup$
    You can find a full combinatoric proof here: proofwiki.org/wiki/Sum_over_k_of_r-k_Choose_m_by_s%2Bk_Choose_n
    $endgroup$
    – kvantour
    Dec 20 '18 at 18:12
















$begingroup$
You can find a full combinatoric proof here: proofwiki.org/wiki/Sum_over_k_of_r-k_Choose_m_by_s%2Bk_Choose_n
$endgroup$
– kvantour
Dec 20 '18 at 18:12




$begingroup$
You can find a full combinatoric proof here: proofwiki.org/wiki/Sum_over_k_of_r-k_Choose_m_by_s%2Bk_Choose_n
$endgroup$
– kvantour
Dec 20 '18 at 18:12










2 Answers
2






active

oldest

votes


















4












$begingroup$

HINT: Let $M={0,1,ldots,n}$; the righthand side is the number of subsets of $M$ of size $a+b+1$. If $S={m_0^S,ldots,m_{a+b}^S}$ is such a subset, indexed in increasing order, $S$ has $a$ members that are smaller than $m_a^S$ and $b$ members that are larger than $m_a^S$. Classify the sets $S$ according to the value of $m_a^S$ to see where the lefthand side comes from.






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    $newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
    newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
    newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
    newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
    newcommand{dd}{{rm d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,{rm e}^{#1},}
    newcommand{fermi}{,{rm f}}
    newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
    newcommand{half}{{1 over 2}}
    newcommand{ic}{{rm i}}
    newcommand{iff}{Longleftrightarrow}
    newcommand{imp}{Longrightarrow}
    newcommand{Li}[1]{,{rm Li}_{#1}}
    newcommand{pars}[1]{left(, #1 ,right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{pp}{{cal P}}
    newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
    newcommand{sech}{,{rm sech}}
    newcommand{sgn}{,{rm sgn}}
    newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
    newcommand{ul}[1]{underline{#1}}
    newcommand{verts}[1]{leftvert, #1 ,rightvert}$

    $ds{sum_{k = 0}^{n}{k choose a}{n - k choose b}={n + 1 choose a + b +1}:
    {large ?}}$
    .




    $$mbox{Lets}quad
    {cal F}pars{z} equiv sum_{n = 0}^{infty}bracks{%
    sum_{k = 0}^{n}{k choose a}{n - k choose b}}z^{n}tag{1}
    $$




    such that
    begin{align}{cal F}pars{z}&
    =sum_{k = 0}^{infty}{k choose a}sum_{n = k}^{infty}{n - k choose b}z^{n}
    =sum_{k = 0}^{infty}{k choose a}sum_{n = 0}^{infty}{n choose b}z^{n + k}
    \[5mm]&=bracks{sum_{k = 0}^{infty}{k choose a}z^{k}}
    bracks{sum_{n = 0}^{infty}{n choose b}z^{n}}
    end{align}




    So, we have to evaluate the following sum:
    begin{align}
    sum_{j = 0}^{infty}{j choose c}z^{j}&=
    sum_{j = 0}^{infty}
    bracks{oint_{verts{w} = a}{pars{1 + w}^{j} over w^{c + 1}}
    ,{dd w over 2piic}}z^{j}
    \[5mm] & =oint_{verts{w} = a}
    {1 over w^{c + 1}}sum_{j = 0}^{infty}bracks{pars{1 + w}z}^{j}
    ,{dd z over 2piic}
    \[5mm]&=oint_{verts{w} = a}{1 over w^{c + 1}}{1 over 1 - pars{1 + w}z}
    ,{dd w over 2piic}
    \[5mm]&={1 over zpars{1/z - 1}}oint_{verts{w} = a}{1 over w^{c + 1}}{1 over 1 - w/pars{1/z - 1}}
    ,{dd z over 2piic}
    \[5mm]&={1 over zpars{1/z - 1}}sum_{j = 0}^{infty}pars{1/z - 1}^{-j}
    oint_{verts{w} = a}{1 over w^{c - j + 1}},{dd z over 2piic}
    \[5mm] & =
    {1 over zpars{1/z - 1}^{c + 1}}
    end{align}

    Note that we can choose $ds{0 < a}$ such that
    $ds{verts{pars{1 + w}z} < 1}$




    Then,
    begin{align}
    {cal F}pars{z}&={1 over zpars{1/z - 1}^{a + 1}},
    {1 over zpars{1/z - 1}^{b + 1}}={z^{a + b} over pars{1 - z}^{a + b + 2}}
    \[5mm] & =
    z^{a + b}sum_{n = 0}^{infty}
    {-a - b - 2 choose n}pars{-1}^{n}z^{n}
    \[5mm]&=sum_{n = a + b}^{infty}{-a - b - 2 choose n - a - b}
    pars{-1}^{n - a - b}z^{n}
    \[5mm]&=sum_{n = a + b}^{infty}
    {a + b + 2 + n - a - b - 1choose n - a - b}pars{-1}^{n - a - b}
    pars{-1}^{n - a - b}z^{n}
    \[5mm]&=sum_{n = a + b}^{infty}{n + 1 choose n - a - b}z^{n}
    =sum_{n = a + b}^{infty}color{#66f}{large{n + 1 choose a + b + 1}}z^{n}
    qquadqquadqquadqquadqquadpars{2}
    end{align}




    With $pars{1}$ and $pars{2}$ we conclude:
    $$color{#66f}{large%
    sum_{k = 0}^{n}{k choose a}{n - k choose b}
    =left{begin{array}{lcl}
    {n + 1 choose a + b + 1} & mbox{if} & n geq a + b
    \[2mm]
    0 &&mbox{otherwise}
    end{array}right.}
    $$







    share|cite|improve this answer











    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f504335%2fproving-sum-k-0n-k-choose-a-n-k-choose-b-n1-choose-ab1%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      HINT: Let $M={0,1,ldots,n}$; the righthand side is the number of subsets of $M$ of size $a+b+1$. If $S={m_0^S,ldots,m_{a+b}^S}$ is such a subset, indexed in increasing order, $S$ has $a$ members that are smaller than $m_a^S$ and $b$ members that are larger than $m_a^S$. Classify the sets $S$ according to the value of $m_a^S$ to see where the lefthand side comes from.






      share|cite|improve this answer









      $endgroup$


















        4












        $begingroup$

        HINT: Let $M={0,1,ldots,n}$; the righthand side is the number of subsets of $M$ of size $a+b+1$. If $S={m_0^S,ldots,m_{a+b}^S}$ is such a subset, indexed in increasing order, $S$ has $a$ members that are smaller than $m_a^S$ and $b$ members that are larger than $m_a^S$. Classify the sets $S$ according to the value of $m_a^S$ to see where the lefthand side comes from.






        share|cite|improve this answer









        $endgroup$
















          4












          4








          4





          $begingroup$

          HINT: Let $M={0,1,ldots,n}$; the righthand side is the number of subsets of $M$ of size $a+b+1$. If $S={m_0^S,ldots,m_{a+b}^S}$ is such a subset, indexed in increasing order, $S$ has $a$ members that are smaller than $m_a^S$ and $b$ members that are larger than $m_a^S$. Classify the sets $S$ according to the value of $m_a^S$ to see where the lefthand side comes from.






          share|cite|improve this answer









          $endgroup$



          HINT: Let $M={0,1,ldots,n}$; the righthand side is the number of subsets of $M$ of size $a+b+1$. If $S={m_0^S,ldots,m_{a+b}^S}$ is such a subset, indexed in increasing order, $S$ has $a$ members that are smaller than $m_a^S$ and $b$ members that are larger than $m_a^S$. Classify the sets $S$ according to the value of $m_a^S$ to see where the lefthand side comes from.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Sep 25 '13 at 3:05









          Brian M. ScottBrian M. Scott

          460k40518919




          460k40518919























              3












              $begingroup$

              $newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
              newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
              newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
              newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
              newcommand{dd}{{rm d}}
              newcommand{ds}[1]{displaystyle{#1}}
              newcommand{expo}[1]{,{rm e}^{#1},}
              newcommand{fermi}{,{rm f}}
              newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
              newcommand{half}{{1 over 2}}
              newcommand{ic}{{rm i}}
              newcommand{iff}{Longleftrightarrow}
              newcommand{imp}{Longrightarrow}
              newcommand{Li}[1]{,{rm Li}_{#1}}
              newcommand{pars}[1]{left(, #1 ,right)}
              newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
              newcommand{pp}{{cal P}}
              newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
              newcommand{sech}{,{rm sech}}
              newcommand{sgn}{,{rm sgn}}
              newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
              newcommand{ul}[1]{underline{#1}}
              newcommand{verts}[1]{leftvert, #1 ,rightvert}$

              $ds{sum_{k = 0}^{n}{k choose a}{n - k choose b}={n + 1 choose a + b +1}:
              {large ?}}$
              .




              $$mbox{Lets}quad
              {cal F}pars{z} equiv sum_{n = 0}^{infty}bracks{%
              sum_{k = 0}^{n}{k choose a}{n - k choose b}}z^{n}tag{1}
              $$




              such that
              begin{align}{cal F}pars{z}&
              =sum_{k = 0}^{infty}{k choose a}sum_{n = k}^{infty}{n - k choose b}z^{n}
              =sum_{k = 0}^{infty}{k choose a}sum_{n = 0}^{infty}{n choose b}z^{n + k}
              \[5mm]&=bracks{sum_{k = 0}^{infty}{k choose a}z^{k}}
              bracks{sum_{n = 0}^{infty}{n choose b}z^{n}}
              end{align}




              So, we have to evaluate the following sum:
              begin{align}
              sum_{j = 0}^{infty}{j choose c}z^{j}&=
              sum_{j = 0}^{infty}
              bracks{oint_{verts{w} = a}{pars{1 + w}^{j} over w^{c + 1}}
              ,{dd w over 2piic}}z^{j}
              \[5mm] & =oint_{verts{w} = a}
              {1 over w^{c + 1}}sum_{j = 0}^{infty}bracks{pars{1 + w}z}^{j}
              ,{dd z over 2piic}
              \[5mm]&=oint_{verts{w} = a}{1 over w^{c + 1}}{1 over 1 - pars{1 + w}z}
              ,{dd w over 2piic}
              \[5mm]&={1 over zpars{1/z - 1}}oint_{verts{w} = a}{1 over w^{c + 1}}{1 over 1 - w/pars{1/z - 1}}
              ,{dd z over 2piic}
              \[5mm]&={1 over zpars{1/z - 1}}sum_{j = 0}^{infty}pars{1/z - 1}^{-j}
              oint_{verts{w} = a}{1 over w^{c - j + 1}},{dd z over 2piic}
              \[5mm] & =
              {1 over zpars{1/z - 1}^{c + 1}}
              end{align}

              Note that we can choose $ds{0 < a}$ such that
              $ds{verts{pars{1 + w}z} < 1}$




              Then,
              begin{align}
              {cal F}pars{z}&={1 over zpars{1/z - 1}^{a + 1}},
              {1 over zpars{1/z - 1}^{b + 1}}={z^{a + b} over pars{1 - z}^{a + b + 2}}
              \[5mm] & =
              z^{a + b}sum_{n = 0}^{infty}
              {-a - b - 2 choose n}pars{-1}^{n}z^{n}
              \[5mm]&=sum_{n = a + b}^{infty}{-a - b - 2 choose n - a - b}
              pars{-1}^{n - a - b}z^{n}
              \[5mm]&=sum_{n = a + b}^{infty}
              {a + b + 2 + n - a - b - 1choose n - a - b}pars{-1}^{n - a - b}
              pars{-1}^{n - a - b}z^{n}
              \[5mm]&=sum_{n = a + b}^{infty}{n + 1 choose n - a - b}z^{n}
              =sum_{n = a + b}^{infty}color{#66f}{large{n + 1 choose a + b + 1}}z^{n}
              qquadqquadqquadqquadqquadpars{2}
              end{align}




              With $pars{1}$ and $pars{2}$ we conclude:
              $$color{#66f}{large%
              sum_{k = 0}^{n}{k choose a}{n - k choose b}
              =left{begin{array}{lcl}
              {n + 1 choose a + b + 1} & mbox{if} & n geq a + b
              \[2mm]
              0 &&mbox{otherwise}
              end{array}right.}
              $$







              share|cite|improve this answer











              $endgroup$


















                3












                $begingroup$

                $newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
                newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
                newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
                newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
                newcommand{dd}{{rm d}}
                newcommand{ds}[1]{displaystyle{#1}}
                newcommand{expo}[1]{,{rm e}^{#1},}
                newcommand{fermi}{,{rm f}}
                newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
                newcommand{half}{{1 over 2}}
                newcommand{ic}{{rm i}}
                newcommand{iff}{Longleftrightarrow}
                newcommand{imp}{Longrightarrow}
                newcommand{Li}[1]{,{rm Li}_{#1}}
                newcommand{pars}[1]{left(, #1 ,right)}
                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                newcommand{pp}{{cal P}}
                newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
                newcommand{sech}{,{rm sech}}
                newcommand{sgn}{,{rm sgn}}
                newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
                newcommand{ul}[1]{underline{#1}}
                newcommand{verts}[1]{leftvert, #1 ,rightvert}$

                $ds{sum_{k = 0}^{n}{k choose a}{n - k choose b}={n + 1 choose a + b +1}:
                {large ?}}$
                .




                $$mbox{Lets}quad
                {cal F}pars{z} equiv sum_{n = 0}^{infty}bracks{%
                sum_{k = 0}^{n}{k choose a}{n - k choose b}}z^{n}tag{1}
                $$




                such that
                begin{align}{cal F}pars{z}&
                =sum_{k = 0}^{infty}{k choose a}sum_{n = k}^{infty}{n - k choose b}z^{n}
                =sum_{k = 0}^{infty}{k choose a}sum_{n = 0}^{infty}{n choose b}z^{n + k}
                \[5mm]&=bracks{sum_{k = 0}^{infty}{k choose a}z^{k}}
                bracks{sum_{n = 0}^{infty}{n choose b}z^{n}}
                end{align}




                So, we have to evaluate the following sum:
                begin{align}
                sum_{j = 0}^{infty}{j choose c}z^{j}&=
                sum_{j = 0}^{infty}
                bracks{oint_{verts{w} = a}{pars{1 + w}^{j} over w^{c + 1}}
                ,{dd w over 2piic}}z^{j}
                \[5mm] & =oint_{verts{w} = a}
                {1 over w^{c + 1}}sum_{j = 0}^{infty}bracks{pars{1 + w}z}^{j}
                ,{dd z over 2piic}
                \[5mm]&=oint_{verts{w} = a}{1 over w^{c + 1}}{1 over 1 - pars{1 + w}z}
                ,{dd w over 2piic}
                \[5mm]&={1 over zpars{1/z - 1}}oint_{verts{w} = a}{1 over w^{c + 1}}{1 over 1 - w/pars{1/z - 1}}
                ,{dd z over 2piic}
                \[5mm]&={1 over zpars{1/z - 1}}sum_{j = 0}^{infty}pars{1/z - 1}^{-j}
                oint_{verts{w} = a}{1 over w^{c - j + 1}},{dd z over 2piic}
                \[5mm] & =
                {1 over zpars{1/z - 1}^{c + 1}}
                end{align}

                Note that we can choose $ds{0 < a}$ such that
                $ds{verts{pars{1 + w}z} < 1}$




                Then,
                begin{align}
                {cal F}pars{z}&={1 over zpars{1/z - 1}^{a + 1}},
                {1 over zpars{1/z - 1}^{b + 1}}={z^{a + b} over pars{1 - z}^{a + b + 2}}
                \[5mm] & =
                z^{a + b}sum_{n = 0}^{infty}
                {-a - b - 2 choose n}pars{-1}^{n}z^{n}
                \[5mm]&=sum_{n = a + b}^{infty}{-a - b - 2 choose n - a - b}
                pars{-1}^{n - a - b}z^{n}
                \[5mm]&=sum_{n = a + b}^{infty}
                {a + b + 2 + n - a - b - 1choose n - a - b}pars{-1}^{n - a - b}
                pars{-1}^{n - a - b}z^{n}
                \[5mm]&=sum_{n = a + b}^{infty}{n + 1 choose n - a - b}z^{n}
                =sum_{n = a + b}^{infty}color{#66f}{large{n + 1 choose a + b + 1}}z^{n}
                qquadqquadqquadqquadqquadpars{2}
                end{align}




                With $pars{1}$ and $pars{2}$ we conclude:
                $$color{#66f}{large%
                sum_{k = 0}^{n}{k choose a}{n - k choose b}
                =left{begin{array}{lcl}
                {n + 1 choose a + b + 1} & mbox{if} & n geq a + b
                \[2mm]
                0 &&mbox{otherwise}
                end{array}right.}
                $$







                share|cite|improve this answer











                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  $newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
                  newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
                  newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
                  newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
                  newcommand{dd}{{rm d}}
                  newcommand{ds}[1]{displaystyle{#1}}
                  newcommand{expo}[1]{,{rm e}^{#1},}
                  newcommand{fermi}{,{rm f}}
                  newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
                  newcommand{half}{{1 over 2}}
                  newcommand{ic}{{rm i}}
                  newcommand{iff}{Longleftrightarrow}
                  newcommand{imp}{Longrightarrow}
                  newcommand{Li}[1]{,{rm Li}_{#1}}
                  newcommand{pars}[1]{left(, #1 ,right)}
                  newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                  newcommand{pp}{{cal P}}
                  newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
                  newcommand{sech}{,{rm sech}}
                  newcommand{sgn}{,{rm sgn}}
                  newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
                  newcommand{ul}[1]{underline{#1}}
                  newcommand{verts}[1]{leftvert, #1 ,rightvert}$

                  $ds{sum_{k = 0}^{n}{k choose a}{n - k choose b}={n + 1 choose a + b +1}:
                  {large ?}}$
                  .




                  $$mbox{Lets}quad
                  {cal F}pars{z} equiv sum_{n = 0}^{infty}bracks{%
                  sum_{k = 0}^{n}{k choose a}{n - k choose b}}z^{n}tag{1}
                  $$




                  such that
                  begin{align}{cal F}pars{z}&
                  =sum_{k = 0}^{infty}{k choose a}sum_{n = k}^{infty}{n - k choose b}z^{n}
                  =sum_{k = 0}^{infty}{k choose a}sum_{n = 0}^{infty}{n choose b}z^{n + k}
                  \[5mm]&=bracks{sum_{k = 0}^{infty}{k choose a}z^{k}}
                  bracks{sum_{n = 0}^{infty}{n choose b}z^{n}}
                  end{align}




                  So, we have to evaluate the following sum:
                  begin{align}
                  sum_{j = 0}^{infty}{j choose c}z^{j}&=
                  sum_{j = 0}^{infty}
                  bracks{oint_{verts{w} = a}{pars{1 + w}^{j} over w^{c + 1}}
                  ,{dd w over 2piic}}z^{j}
                  \[5mm] & =oint_{verts{w} = a}
                  {1 over w^{c + 1}}sum_{j = 0}^{infty}bracks{pars{1 + w}z}^{j}
                  ,{dd z over 2piic}
                  \[5mm]&=oint_{verts{w} = a}{1 over w^{c + 1}}{1 over 1 - pars{1 + w}z}
                  ,{dd w over 2piic}
                  \[5mm]&={1 over zpars{1/z - 1}}oint_{verts{w} = a}{1 over w^{c + 1}}{1 over 1 - w/pars{1/z - 1}}
                  ,{dd z over 2piic}
                  \[5mm]&={1 over zpars{1/z - 1}}sum_{j = 0}^{infty}pars{1/z - 1}^{-j}
                  oint_{verts{w} = a}{1 over w^{c - j + 1}},{dd z over 2piic}
                  \[5mm] & =
                  {1 over zpars{1/z - 1}^{c + 1}}
                  end{align}

                  Note that we can choose $ds{0 < a}$ such that
                  $ds{verts{pars{1 + w}z} < 1}$




                  Then,
                  begin{align}
                  {cal F}pars{z}&={1 over zpars{1/z - 1}^{a + 1}},
                  {1 over zpars{1/z - 1}^{b + 1}}={z^{a + b} over pars{1 - z}^{a + b + 2}}
                  \[5mm] & =
                  z^{a + b}sum_{n = 0}^{infty}
                  {-a - b - 2 choose n}pars{-1}^{n}z^{n}
                  \[5mm]&=sum_{n = a + b}^{infty}{-a - b - 2 choose n - a - b}
                  pars{-1}^{n - a - b}z^{n}
                  \[5mm]&=sum_{n = a + b}^{infty}
                  {a + b + 2 + n - a - b - 1choose n - a - b}pars{-1}^{n - a - b}
                  pars{-1}^{n - a - b}z^{n}
                  \[5mm]&=sum_{n = a + b}^{infty}{n + 1 choose n - a - b}z^{n}
                  =sum_{n = a + b}^{infty}color{#66f}{large{n + 1 choose a + b + 1}}z^{n}
                  qquadqquadqquadqquadqquadpars{2}
                  end{align}




                  With $pars{1}$ and $pars{2}$ we conclude:
                  $$color{#66f}{large%
                  sum_{k = 0}^{n}{k choose a}{n - k choose b}
                  =left{begin{array}{lcl}
                  {n + 1 choose a + b + 1} & mbox{if} & n geq a + b
                  \[2mm]
                  0 &&mbox{otherwise}
                  end{array}right.}
                  $$







                  share|cite|improve this answer











                  $endgroup$



                  $newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
                  newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
                  newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
                  newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
                  newcommand{dd}{{rm d}}
                  newcommand{ds}[1]{displaystyle{#1}}
                  newcommand{expo}[1]{,{rm e}^{#1},}
                  newcommand{fermi}{,{rm f}}
                  newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
                  newcommand{half}{{1 over 2}}
                  newcommand{ic}{{rm i}}
                  newcommand{iff}{Longleftrightarrow}
                  newcommand{imp}{Longrightarrow}
                  newcommand{Li}[1]{,{rm Li}_{#1}}
                  newcommand{pars}[1]{left(, #1 ,right)}
                  newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                  newcommand{pp}{{cal P}}
                  newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
                  newcommand{sech}{,{rm sech}}
                  newcommand{sgn}{,{rm sgn}}
                  newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
                  newcommand{ul}[1]{underline{#1}}
                  newcommand{verts}[1]{leftvert, #1 ,rightvert}$

                  $ds{sum_{k = 0}^{n}{k choose a}{n - k choose b}={n + 1 choose a + b +1}:
                  {large ?}}$
                  .




                  $$mbox{Lets}quad
                  {cal F}pars{z} equiv sum_{n = 0}^{infty}bracks{%
                  sum_{k = 0}^{n}{k choose a}{n - k choose b}}z^{n}tag{1}
                  $$




                  such that
                  begin{align}{cal F}pars{z}&
                  =sum_{k = 0}^{infty}{k choose a}sum_{n = k}^{infty}{n - k choose b}z^{n}
                  =sum_{k = 0}^{infty}{k choose a}sum_{n = 0}^{infty}{n choose b}z^{n + k}
                  \[5mm]&=bracks{sum_{k = 0}^{infty}{k choose a}z^{k}}
                  bracks{sum_{n = 0}^{infty}{n choose b}z^{n}}
                  end{align}




                  So, we have to evaluate the following sum:
                  begin{align}
                  sum_{j = 0}^{infty}{j choose c}z^{j}&=
                  sum_{j = 0}^{infty}
                  bracks{oint_{verts{w} = a}{pars{1 + w}^{j} over w^{c + 1}}
                  ,{dd w over 2piic}}z^{j}
                  \[5mm] & =oint_{verts{w} = a}
                  {1 over w^{c + 1}}sum_{j = 0}^{infty}bracks{pars{1 + w}z}^{j}
                  ,{dd z over 2piic}
                  \[5mm]&=oint_{verts{w} = a}{1 over w^{c + 1}}{1 over 1 - pars{1 + w}z}
                  ,{dd w over 2piic}
                  \[5mm]&={1 over zpars{1/z - 1}}oint_{verts{w} = a}{1 over w^{c + 1}}{1 over 1 - w/pars{1/z - 1}}
                  ,{dd z over 2piic}
                  \[5mm]&={1 over zpars{1/z - 1}}sum_{j = 0}^{infty}pars{1/z - 1}^{-j}
                  oint_{verts{w} = a}{1 over w^{c - j + 1}},{dd z over 2piic}
                  \[5mm] & =
                  {1 over zpars{1/z - 1}^{c + 1}}
                  end{align}

                  Note that we can choose $ds{0 < a}$ such that
                  $ds{verts{pars{1 + w}z} < 1}$




                  Then,
                  begin{align}
                  {cal F}pars{z}&={1 over zpars{1/z - 1}^{a + 1}},
                  {1 over zpars{1/z - 1}^{b + 1}}={z^{a + b} over pars{1 - z}^{a + b + 2}}
                  \[5mm] & =
                  z^{a + b}sum_{n = 0}^{infty}
                  {-a - b - 2 choose n}pars{-1}^{n}z^{n}
                  \[5mm]&=sum_{n = a + b}^{infty}{-a - b - 2 choose n - a - b}
                  pars{-1}^{n - a - b}z^{n}
                  \[5mm]&=sum_{n = a + b}^{infty}
                  {a + b + 2 + n - a - b - 1choose n - a - b}pars{-1}^{n - a - b}
                  pars{-1}^{n - a - b}z^{n}
                  \[5mm]&=sum_{n = a + b}^{infty}{n + 1 choose n - a - b}z^{n}
                  =sum_{n = a + b}^{infty}color{#66f}{large{n + 1 choose a + b + 1}}z^{n}
                  qquadqquadqquadqquadqquadpars{2}
                  end{align}




                  With $pars{1}$ and $pars{2}$ we conclude:
                  $$color{#66f}{large%
                  sum_{k = 0}^{n}{k choose a}{n - k choose b}
                  =left{begin{array}{lcl}
                  {n + 1 choose a + b + 1} & mbox{if} & n geq a + b
                  \[2mm]
                  0 &&mbox{otherwise}
                  end{array}right.}
                  $$








                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 20 '18 at 17:47

























                  answered Dec 2 '14 at 17:50









                  Felix MarinFelix Marin

                  68.9k7110147




                  68.9k7110147






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f504335%2fproving-sum-k-0n-k-choose-a-n-k-choose-b-n1-choose-ab1%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Plaza Victoria

                      Puebla de Zaragoza

                      Musa