Ideal of K[x,y], need for some precisions.
$begingroup$
I was reading this topic to show that $(x-a,y-b)$ is an ideal of $K[x,y]$, where $K$ is a field. The answer suggests to show that $(x-a,y-b)$ is the kernel of the evaluation in $ev_{(a,b)} : K[x,y] rightarrow K$.
I understand that $ev_{(a,b)}(x-a)=0$ and $ev_{(a,b)}(y-b)=0$ so we have the inclusion $(x-a,y-b) subset Ker(ev_{(a,b)})$ but how to show the other inclusion?
ideals
$endgroup$
add a comment |
$begingroup$
I was reading this topic to show that $(x-a,y-b)$ is an ideal of $K[x,y]$, where $K$ is a field. The answer suggests to show that $(x-a,y-b)$ is the kernel of the evaluation in $ev_{(a,b)} : K[x,y] rightarrow K$.
I understand that $ev_{(a,b)}(x-a)=0$ and $ev_{(a,b)}(y-b)=0$ so we have the inclusion $(x-a,y-b) subset Ker(ev_{(a,b)})$ but how to show the other inclusion?
ideals
$endgroup$
1
$begingroup$
Hint: use polynomial division
$endgroup$
– Václav Mordvinov
Dec 20 '18 at 17:11
$begingroup$
This is evident $(x,y)$ is notation for ideal generated by $x,y$...
$endgroup$
– user370967
Dec 20 '18 at 18:14
$begingroup$
@VáclavMordvinov but is there a polynômial division in K[x,y]?
$endgroup$
– roi_saumon
Dec 21 '18 at 13:44
add a comment |
$begingroup$
I was reading this topic to show that $(x-a,y-b)$ is an ideal of $K[x,y]$, where $K$ is a field. The answer suggests to show that $(x-a,y-b)$ is the kernel of the evaluation in $ev_{(a,b)} : K[x,y] rightarrow K$.
I understand that $ev_{(a,b)}(x-a)=0$ and $ev_{(a,b)}(y-b)=0$ so we have the inclusion $(x-a,y-b) subset Ker(ev_{(a,b)})$ but how to show the other inclusion?
ideals
$endgroup$
I was reading this topic to show that $(x-a,y-b)$ is an ideal of $K[x,y]$, where $K$ is a field. The answer suggests to show that $(x-a,y-b)$ is the kernel of the evaluation in $ev_{(a,b)} : K[x,y] rightarrow K$.
I understand that $ev_{(a,b)}(x-a)=0$ and $ev_{(a,b)}(y-b)=0$ so we have the inclusion $(x-a,y-b) subset Ker(ev_{(a,b)})$ but how to show the other inclusion?
ideals
ideals
asked Dec 20 '18 at 16:59
roi_saumonroi_saumon
63438
63438
1
$begingroup$
Hint: use polynomial division
$endgroup$
– Václav Mordvinov
Dec 20 '18 at 17:11
$begingroup$
This is evident $(x,y)$ is notation for ideal generated by $x,y$...
$endgroup$
– user370967
Dec 20 '18 at 18:14
$begingroup$
@VáclavMordvinov but is there a polynômial division in K[x,y]?
$endgroup$
– roi_saumon
Dec 21 '18 at 13:44
add a comment |
1
$begingroup$
Hint: use polynomial division
$endgroup$
– Václav Mordvinov
Dec 20 '18 at 17:11
$begingroup$
This is evident $(x,y)$ is notation for ideal generated by $x,y$...
$endgroup$
– user370967
Dec 20 '18 at 18:14
$begingroup$
@VáclavMordvinov but is there a polynômial division in K[x,y]?
$endgroup$
– roi_saumon
Dec 21 '18 at 13:44
1
1
$begingroup$
Hint: use polynomial division
$endgroup$
– Václav Mordvinov
Dec 20 '18 at 17:11
$begingroup$
Hint: use polynomial division
$endgroup$
– Václav Mordvinov
Dec 20 '18 at 17:11
$begingroup$
This is evident $(x,y)$ is notation for ideal generated by $x,y$...
$endgroup$
– user370967
Dec 20 '18 at 18:14
$begingroup$
This is evident $(x,y)$ is notation for ideal generated by $x,y$...
$endgroup$
– user370967
Dec 20 '18 at 18:14
$begingroup$
@VáclavMordvinov but is there a polynômial division in K[x,y]?
$endgroup$
– roi_saumon
Dec 21 '18 at 13:44
$begingroup$
@VáclavMordvinov but is there a polynômial division in K[x,y]?
$endgroup$
– roi_saumon
Dec 21 '18 at 13:44
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint:
Write
$ev_{(a,b)} = ev_{(0,0)} circ phi $, where $phi$ is the automorphism of $K[x,y]$ given by $phi(f(x,y))=f(x+a,y+b)$.
Then
$$
ker ev_{(a,b)} = ev_{(a,b)}^{-1}(0) = phi^{-1}(ev_{(0,0)}^{-1}(0)) = phi^{-1}(ker ev_{(0,0)})
$$
$endgroup$
$begingroup$
I am not sure I see how to make use of the hint.
$endgroup$
– roi_saumon
Dec 21 '18 at 13:46
$begingroup$
@roi_saumon, see my edited answer
$endgroup$
– lhf
Dec 21 '18 at 15:36
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047748%2fideal-of-kx-y-need-for-some-precisions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
Write
$ev_{(a,b)} = ev_{(0,0)} circ phi $, where $phi$ is the automorphism of $K[x,y]$ given by $phi(f(x,y))=f(x+a,y+b)$.
Then
$$
ker ev_{(a,b)} = ev_{(a,b)}^{-1}(0) = phi^{-1}(ev_{(0,0)}^{-1}(0)) = phi^{-1}(ker ev_{(0,0)})
$$
$endgroup$
$begingroup$
I am not sure I see how to make use of the hint.
$endgroup$
– roi_saumon
Dec 21 '18 at 13:46
$begingroup$
@roi_saumon, see my edited answer
$endgroup$
– lhf
Dec 21 '18 at 15:36
add a comment |
$begingroup$
Hint:
Write
$ev_{(a,b)} = ev_{(0,0)} circ phi $, where $phi$ is the automorphism of $K[x,y]$ given by $phi(f(x,y))=f(x+a,y+b)$.
Then
$$
ker ev_{(a,b)} = ev_{(a,b)}^{-1}(0) = phi^{-1}(ev_{(0,0)}^{-1}(0)) = phi^{-1}(ker ev_{(0,0)})
$$
$endgroup$
$begingroup$
I am not sure I see how to make use of the hint.
$endgroup$
– roi_saumon
Dec 21 '18 at 13:46
$begingroup$
@roi_saumon, see my edited answer
$endgroup$
– lhf
Dec 21 '18 at 15:36
add a comment |
$begingroup$
Hint:
Write
$ev_{(a,b)} = ev_{(0,0)} circ phi $, where $phi$ is the automorphism of $K[x,y]$ given by $phi(f(x,y))=f(x+a,y+b)$.
Then
$$
ker ev_{(a,b)} = ev_{(a,b)}^{-1}(0) = phi^{-1}(ev_{(0,0)}^{-1}(0)) = phi^{-1}(ker ev_{(0,0)})
$$
$endgroup$
Hint:
Write
$ev_{(a,b)} = ev_{(0,0)} circ phi $, where $phi$ is the automorphism of $K[x,y]$ given by $phi(f(x,y))=f(x+a,y+b)$.
Then
$$
ker ev_{(a,b)} = ev_{(a,b)}^{-1}(0) = phi^{-1}(ev_{(0,0)}^{-1}(0)) = phi^{-1}(ker ev_{(0,0)})
$$
edited Dec 21 '18 at 15:36
answered Dec 20 '18 at 17:52
lhflhf
167k11172404
167k11172404
$begingroup$
I am not sure I see how to make use of the hint.
$endgroup$
– roi_saumon
Dec 21 '18 at 13:46
$begingroup$
@roi_saumon, see my edited answer
$endgroup$
– lhf
Dec 21 '18 at 15:36
add a comment |
$begingroup$
I am not sure I see how to make use of the hint.
$endgroup$
– roi_saumon
Dec 21 '18 at 13:46
$begingroup$
@roi_saumon, see my edited answer
$endgroup$
– lhf
Dec 21 '18 at 15:36
$begingroup$
I am not sure I see how to make use of the hint.
$endgroup$
– roi_saumon
Dec 21 '18 at 13:46
$begingroup$
I am not sure I see how to make use of the hint.
$endgroup$
– roi_saumon
Dec 21 '18 at 13:46
$begingroup$
@roi_saumon, see my edited answer
$endgroup$
– lhf
Dec 21 '18 at 15:36
$begingroup$
@roi_saumon, see my edited answer
$endgroup$
– lhf
Dec 21 '18 at 15:36
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047748%2fideal-of-kx-y-need-for-some-precisions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Hint: use polynomial division
$endgroup$
– Václav Mordvinov
Dec 20 '18 at 17:11
$begingroup$
This is evident $(x,y)$ is notation for ideal generated by $x,y$...
$endgroup$
– user370967
Dec 20 '18 at 18:14
$begingroup$
@VáclavMordvinov but is there a polynômial division in K[x,y]?
$endgroup$
– roi_saumon
Dec 21 '18 at 13:44