How to evaluate $int frac{x^3}{sqrt {x^2+1}}dx$












1












$begingroup$


Evaluate $$int frac{x^3}{sqrt {x^2+1}}dx$$
Let $u={x^2}+1$. Then $x=sqrt {u-1}$ and $dx=frac{1}{2sqrt{u-1}}du$.



Therefore, $$int frac{(u-1)sqrt{u-1}}{sqrt u}frac{1}{2sqrt {u-1}}du$$
$$=frac{1}{2}int {sqrt u}-{frac {1}{sqrt u}du}$$
$$={frac{2}{3}}{{(x^2+1})}^{3/2}-{frac{1}{2}}{sqrt {x^2+1}}+C$$for some constant $C$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Thank your advice. I correct it.
    $endgroup$
    – Maggie
    Dec 20 '18 at 16:38
















1












$begingroup$


Evaluate $$int frac{x^3}{sqrt {x^2+1}}dx$$
Let $u={x^2}+1$. Then $x=sqrt {u-1}$ and $dx=frac{1}{2sqrt{u-1}}du$.



Therefore, $$int frac{(u-1)sqrt{u-1}}{sqrt u}frac{1}{2sqrt {u-1}}du$$
$$=frac{1}{2}int {sqrt u}-{frac {1}{sqrt u}du}$$
$$={frac{2}{3}}{{(x^2+1})}^{3/2}-{frac{1}{2}}{sqrt {x^2+1}}+C$$for some constant $C$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Thank your advice. I correct it.
    $endgroup$
    – Maggie
    Dec 20 '18 at 16:38














1












1








1





$begingroup$


Evaluate $$int frac{x^3}{sqrt {x^2+1}}dx$$
Let $u={x^2}+1$. Then $x=sqrt {u-1}$ and $dx=frac{1}{2sqrt{u-1}}du$.



Therefore, $$int frac{(u-1)sqrt{u-1}}{sqrt u}frac{1}{2sqrt {u-1}}du$$
$$=frac{1}{2}int {sqrt u}-{frac {1}{sqrt u}du}$$
$$={frac{2}{3}}{{(x^2+1})}^{3/2}-{frac{1}{2}}{sqrt {x^2+1}}+C$$for some constant $C$










share|cite|improve this question











$endgroup$




Evaluate $$int frac{x^3}{sqrt {x^2+1}}dx$$
Let $u={x^2}+1$. Then $x=sqrt {u-1}$ and $dx=frac{1}{2sqrt{u-1}}du$.



Therefore, $$int frac{(u-1)sqrt{u-1}}{sqrt u}frac{1}{2sqrt {u-1}}du$$
$$=frac{1}{2}int {sqrt u}-{frac {1}{sqrt u}du}$$
$$={frac{2}{3}}{{(x^2+1})}^{3/2}-{frac{1}{2}}{sqrt {x^2+1}}+C$$for some constant $C$







integration proof-verification






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 20 '18 at 16:48









J.G.

33.1k23252




33.1k23252










asked Dec 20 '18 at 16:30









MaggieMaggie

1058




1058












  • $begingroup$
    Thank your advice. I correct it.
    $endgroup$
    – Maggie
    Dec 20 '18 at 16:38


















  • $begingroup$
    Thank your advice. I correct it.
    $endgroup$
    – Maggie
    Dec 20 '18 at 16:38
















$begingroup$
Thank your advice. I correct it.
$endgroup$
– Maggie
Dec 20 '18 at 16:38




$begingroup$
Thank your advice. I correct it.
$endgroup$
– Maggie
Dec 20 '18 at 16:38










4 Answers
4






active

oldest

votes


















2












$begingroup$

You made a small mistake on the last line; integrating $frac{1}{2}u^{1/2}-frac{1}{2}u^{-1/2}$ should give $frac{1}{3}u^{3/2}-u^{1/2}+C$, not $frac{2}{3}u^{3/2}-frac{1}{2}u^{1/2}+C$. When you want to double-check an antiderivative, it's worth differentiating it to see if you get the expected integrand.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Sorry. I didn't notice it. Thank a lot!
    $endgroup$
    – Maggie
    Dec 20 '18 at 16:42



















2












$begingroup$

Here I give you an alternative approach. If we make $x = sinh(u)$, we get



begin{align*}
intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x & = intsinh^{3}(u)mathrm{d}u = int(cosh^{2}(u)-1)sinh(u)mathrm{d}u\
& = frac{cosh^{3}(u)}{3} - cosh(u) + K
end{align*}



Since $x = sinh(u) = pmsqrt{cosh^{2}(u)-1}$, we conclude that $cosh(u) = sqrt{x^{2} + 1}$. Finally, it results that



begin{align*}
intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x = frac{(x^{2}+1)^{3/2}}{3} - sqrt{x^{2}+1} + K
end{align*}






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    OH, I didn't find this method.It's helpful for me.Thank a lot.
    $endgroup$
    – Maggie
    Dec 20 '18 at 16:49



















2












$begingroup$

Just to give another approach, let $x^2+1=u^2$, in which case $xdx=udu$ and we have



$$int{x^3oversqrt{x^2+1}}dx=int{x^2cdot xdxoversqrt{x^2+1}}=int{(u^2-1)uduover u}=int(u^2-1)du={1over3}u^3-u+C\={1over3}(x^2+1)^{3/2}-(x^2+1)^{1/2}+C$$



The main virtue (if any) of this approach is that it gets rid of the square root symbol for the integration step.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Method 1:



    Another approach using trigonometric substitutions



    begin{equation}
    I =int frac{x^3}{sqrt {x^2+1}}dx
    end{equation}



    Here let $x = tan(theta)$ we arrive at:



    begin{align}
    I &=int frac{tan^3(theta)}{sqrt {tan^2(theta)+1}}sec^2(theta):dtheta = int frac{tan^3(theta)}{sec(theta)}sec^2(theta):dtheta\
    &= int tan^3(theta)sec(theta):dtheta = int sec(theta)tan(theta) tan^2(theta):dtheta \
    &= int sec(theta)tan(theta) left(sec^2(theta) - 1right):dtheta
    end{align}



    Now let $u = sec(theta)$ to yield:



    begin{equation}
    int sec(theta)tan(theta)left(u^2 - 1right) frac{:dtheta}{sec(theta)tan(theta)} = int u^2 - 1 :du = frac{u^3}{3} - u + C
    end{equation}



    Where $C$ is the constant of integration.



    Now $u = sec(theta)$ and $x = tan(theta)$ and so $u = sec(arctan(x)) = sqrt{x^2 + 1}$



    Thus,



    begin{equation}
    I =int frac{x^3}{sqrt {x^2+1}}dx = frac{1}{3}left( sqrt {x^2+1}right)^3 - sqrt {x^2+1} + C = frac{1}{3}left(x^2+1right)^{frac{3}{2}} - sqrt {x^2+1} + C
    end{equation}



    Method 2:



    begin{align}
    I &=int frac{x^3}{sqrt {x^2+1}}dx = int x cdot frac{x^2}{sqrt {x^2+1}}dx \
    &= int x cdot frac{x^2 + 1 - 1}{sqrt {x^2+1}}dx = int x left( sqrt {x^2+1} - frac{1}{sqrt{x^2+1}}right)dx
    end{align}



    Here let $u = x^2 + 1$:



    begin{align}
    I &= int x left( sqrt {u} - frac{1}{sqrt{u}}right)frac{du}{2x} = frac{1}{2}left[int left( u^{frac{1}{2}} - u^{-frac{1}{2}}right)duright] = frac{1}{2}left[frac{ u^{frac{3}{2}}}{frac{3}{2}} + frac{ u^{frac{1}{2}}}{frac{1}{2}} right] + C \
    &= frac{1}{3}u^{frac{3}{2}} + u^{frac{1}{2}} + C = frac{1}{3}left(x^2 + 1right)^{frac{3}{2}} + left(x^2 + 1right)^{frac{1}{2}} + C
    end{align}



    Where $C$ is the constant of integration.






    share|cite|improve this answer











    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047713%2fhow-to-evaluate-int-fracx3-sqrt-x21dx%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      You made a small mistake on the last line; integrating $frac{1}{2}u^{1/2}-frac{1}{2}u^{-1/2}$ should give $frac{1}{3}u^{3/2}-u^{1/2}+C$, not $frac{2}{3}u^{3/2}-frac{1}{2}u^{1/2}+C$. When you want to double-check an antiderivative, it's worth differentiating it to see if you get the expected integrand.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Sorry. I didn't notice it. Thank a lot!
        $endgroup$
        – Maggie
        Dec 20 '18 at 16:42
















      2












      $begingroup$

      You made a small mistake on the last line; integrating $frac{1}{2}u^{1/2}-frac{1}{2}u^{-1/2}$ should give $frac{1}{3}u^{3/2}-u^{1/2}+C$, not $frac{2}{3}u^{3/2}-frac{1}{2}u^{1/2}+C$. When you want to double-check an antiderivative, it's worth differentiating it to see if you get the expected integrand.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Sorry. I didn't notice it. Thank a lot!
        $endgroup$
        – Maggie
        Dec 20 '18 at 16:42














      2












      2








      2





      $begingroup$

      You made a small mistake on the last line; integrating $frac{1}{2}u^{1/2}-frac{1}{2}u^{-1/2}$ should give $frac{1}{3}u^{3/2}-u^{1/2}+C$, not $frac{2}{3}u^{3/2}-frac{1}{2}u^{1/2}+C$. When you want to double-check an antiderivative, it's worth differentiating it to see if you get the expected integrand.






      share|cite|improve this answer









      $endgroup$



      You made a small mistake on the last line; integrating $frac{1}{2}u^{1/2}-frac{1}{2}u^{-1/2}$ should give $frac{1}{3}u^{3/2}-u^{1/2}+C$, not $frac{2}{3}u^{3/2}-frac{1}{2}u^{1/2}+C$. When you want to double-check an antiderivative, it's worth differentiating it to see if you get the expected integrand.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Dec 20 '18 at 16:36









      J.G.J.G.

      33.1k23252




      33.1k23252












      • $begingroup$
        Sorry. I didn't notice it. Thank a lot!
        $endgroup$
        – Maggie
        Dec 20 '18 at 16:42


















      • $begingroup$
        Sorry. I didn't notice it. Thank a lot!
        $endgroup$
        – Maggie
        Dec 20 '18 at 16:42
















      $begingroup$
      Sorry. I didn't notice it. Thank a lot!
      $endgroup$
      – Maggie
      Dec 20 '18 at 16:42




      $begingroup$
      Sorry. I didn't notice it. Thank a lot!
      $endgroup$
      – Maggie
      Dec 20 '18 at 16:42











      2












      $begingroup$

      Here I give you an alternative approach. If we make $x = sinh(u)$, we get



      begin{align*}
      intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x & = intsinh^{3}(u)mathrm{d}u = int(cosh^{2}(u)-1)sinh(u)mathrm{d}u\
      & = frac{cosh^{3}(u)}{3} - cosh(u) + K
      end{align*}



      Since $x = sinh(u) = pmsqrt{cosh^{2}(u)-1}$, we conclude that $cosh(u) = sqrt{x^{2} + 1}$. Finally, it results that



      begin{align*}
      intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x = frac{(x^{2}+1)^{3/2}}{3} - sqrt{x^{2}+1} + K
      end{align*}






      share|cite|improve this answer











      $endgroup$









      • 1




        $begingroup$
        OH, I didn't find this method.It's helpful for me.Thank a lot.
        $endgroup$
        – Maggie
        Dec 20 '18 at 16:49
















      2












      $begingroup$

      Here I give you an alternative approach. If we make $x = sinh(u)$, we get



      begin{align*}
      intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x & = intsinh^{3}(u)mathrm{d}u = int(cosh^{2}(u)-1)sinh(u)mathrm{d}u\
      & = frac{cosh^{3}(u)}{3} - cosh(u) + K
      end{align*}



      Since $x = sinh(u) = pmsqrt{cosh^{2}(u)-1}$, we conclude that $cosh(u) = sqrt{x^{2} + 1}$. Finally, it results that



      begin{align*}
      intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x = frac{(x^{2}+1)^{3/2}}{3} - sqrt{x^{2}+1} + K
      end{align*}






      share|cite|improve this answer











      $endgroup$









      • 1




        $begingroup$
        OH, I didn't find this method.It's helpful for me.Thank a lot.
        $endgroup$
        – Maggie
        Dec 20 '18 at 16:49














      2












      2








      2





      $begingroup$

      Here I give you an alternative approach. If we make $x = sinh(u)$, we get



      begin{align*}
      intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x & = intsinh^{3}(u)mathrm{d}u = int(cosh^{2}(u)-1)sinh(u)mathrm{d}u\
      & = frac{cosh^{3}(u)}{3} - cosh(u) + K
      end{align*}



      Since $x = sinh(u) = pmsqrt{cosh^{2}(u)-1}$, we conclude that $cosh(u) = sqrt{x^{2} + 1}$. Finally, it results that



      begin{align*}
      intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x = frac{(x^{2}+1)^{3/2}}{3} - sqrt{x^{2}+1} + K
      end{align*}






      share|cite|improve this answer











      $endgroup$



      Here I give you an alternative approach. If we make $x = sinh(u)$, we get



      begin{align*}
      intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x & = intsinh^{3}(u)mathrm{d}u = int(cosh^{2}(u)-1)sinh(u)mathrm{d}u\
      & = frac{cosh^{3}(u)}{3} - cosh(u) + K
      end{align*}



      Since $x = sinh(u) = pmsqrt{cosh^{2}(u)-1}$, we conclude that $cosh(u) = sqrt{x^{2} + 1}$. Finally, it results that



      begin{align*}
      intfrac{x^{3}}{sqrt{x^{2}+1}}mathrm{d}x = frac{(x^{2}+1)^{3/2}}{3} - sqrt{x^{2}+1} + K
      end{align*}







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Dec 20 '18 at 16:54

























      answered Dec 20 '18 at 16:40









      APC89APC89

      2,371720




      2,371720








      • 1




        $begingroup$
        OH, I didn't find this method.It's helpful for me.Thank a lot.
        $endgroup$
        – Maggie
        Dec 20 '18 at 16:49














      • 1




        $begingroup$
        OH, I didn't find this method.It's helpful for me.Thank a lot.
        $endgroup$
        – Maggie
        Dec 20 '18 at 16:49








      1




      1




      $begingroup$
      OH, I didn't find this method.It's helpful for me.Thank a lot.
      $endgroup$
      – Maggie
      Dec 20 '18 at 16:49




      $begingroup$
      OH, I didn't find this method.It's helpful for me.Thank a lot.
      $endgroup$
      – Maggie
      Dec 20 '18 at 16:49











      2












      $begingroup$

      Just to give another approach, let $x^2+1=u^2$, in which case $xdx=udu$ and we have



      $$int{x^3oversqrt{x^2+1}}dx=int{x^2cdot xdxoversqrt{x^2+1}}=int{(u^2-1)uduover u}=int(u^2-1)du={1over3}u^3-u+C\={1over3}(x^2+1)^{3/2}-(x^2+1)^{1/2}+C$$



      The main virtue (if any) of this approach is that it gets rid of the square root symbol for the integration step.






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        Just to give another approach, let $x^2+1=u^2$, in which case $xdx=udu$ and we have



        $$int{x^3oversqrt{x^2+1}}dx=int{x^2cdot xdxoversqrt{x^2+1}}=int{(u^2-1)uduover u}=int(u^2-1)du={1over3}u^3-u+C\={1over3}(x^2+1)^{3/2}-(x^2+1)^{1/2}+C$$



        The main virtue (if any) of this approach is that it gets rid of the square root symbol for the integration step.






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          Just to give another approach, let $x^2+1=u^2$, in which case $xdx=udu$ and we have



          $$int{x^3oversqrt{x^2+1}}dx=int{x^2cdot xdxoversqrt{x^2+1}}=int{(u^2-1)uduover u}=int(u^2-1)du={1over3}u^3-u+C\={1over3}(x^2+1)^{3/2}-(x^2+1)^{1/2}+C$$



          The main virtue (if any) of this approach is that it gets rid of the square root symbol for the integration step.






          share|cite|improve this answer









          $endgroup$



          Just to give another approach, let $x^2+1=u^2$, in which case $xdx=udu$ and we have



          $$int{x^3oversqrt{x^2+1}}dx=int{x^2cdot xdxoversqrt{x^2+1}}=int{(u^2-1)uduover u}=int(u^2-1)du={1over3}u^3-u+C\={1over3}(x^2+1)^{3/2}-(x^2+1)^{1/2}+C$$



          The main virtue (if any) of this approach is that it gets rid of the square root symbol for the integration step.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 20 '18 at 17:06









          Barry CipraBarry Cipra

          60.6k655129




          60.6k655129























              1












              $begingroup$

              Method 1:



              Another approach using trigonometric substitutions



              begin{equation}
              I =int frac{x^3}{sqrt {x^2+1}}dx
              end{equation}



              Here let $x = tan(theta)$ we arrive at:



              begin{align}
              I &=int frac{tan^3(theta)}{sqrt {tan^2(theta)+1}}sec^2(theta):dtheta = int frac{tan^3(theta)}{sec(theta)}sec^2(theta):dtheta\
              &= int tan^3(theta)sec(theta):dtheta = int sec(theta)tan(theta) tan^2(theta):dtheta \
              &= int sec(theta)tan(theta) left(sec^2(theta) - 1right):dtheta
              end{align}



              Now let $u = sec(theta)$ to yield:



              begin{equation}
              int sec(theta)tan(theta)left(u^2 - 1right) frac{:dtheta}{sec(theta)tan(theta)} = int u^2 - 1 :du = frac{u^3}{3} - u + C
              end{equation}



              Where $C$ is the constant of integration.



              Now $u = sec(theta)$ and $x = tan(theta)$ and so $u = sec(arctan(x)) = sqrt{x^2 + 1}$



              Thus,



              begin{equation}
              I =int frac{x^3}{sqrt {x^2+1}}dx = frac{1}{3}left( sqrt {x^2+1}right)^3 - sqrt {x^2+1} + C = frac{1}{3}left(x^2+1right)^{frac{3}{2}} - sqrt {x^2+1} + C
              end{equation}



              Method 2:



              begin{align}
              I &=int frac{x^3}{sqrt {x^2+1}}dx = int x cdot frac{x^2}{sqrt {x^2+1}}dx \
              &= int x cdot frac{x^2 + 1 - 1}{sqrt {x^2+1}}dx = int x left( sqrt {x^2+1} - frac{1}{sqrt{x^2+1}}right)dx
              end{align}



              Here let $u = x^2 + 1$:



              begin{align}
              I &= int x left( sqrt {u} - frac{1}{sqrt{u}}right)frac{du}{2x} = frac{1}{2}left[int left( u^{frac{1}{2}} - u^{-frac{1}{2}}right)duright] = frac{1}{2}left[frac{ u^{frac{3}{2}}}{frac{3}{2}} + frac{ u^{frac{1}{2}}}{frac{1}{2}} right] + C \
              &= frac{1}{3}u^{frac{3}{2}} + u^{frac{1}{2}} + C = frac{1}{3}left(x^2 + 1right)^{frac{3}{2}} + left(x^2 + 1right)^{frac{1}{2}} + C
              end{align}



              Where $C$ is the constant of integration.






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Method 1:



                Another approach using trigonometric substitutions



                begin{equation}
                I =int frac{x^3}{sqrt {x^2+1}}dx
                end{equation}



                Here let $x = tan(theta)$ we arrive at:



                begin{align}
                I &=int frac{tan^3(theta)}{sqrt {tan^2(theta)+1}}sec^2(theta):dtheta = int frac{tan^3(theta)}{sec(theta)}sec^2(theta):dtheta\
                &= int tan^3(theta)sec(theta):dtheta = int sec(theta)tan(theta) tan^2(theta):dtheta \
                &= int sec(theta)tan(theta) left(sec^2(theta) - 1right):dtheta
                end{align}



                Now let $u = sec(theta)$ to yield:



                begin{equation}
                int sec(theta)tan(theta)left(u^2 - 1right) frac{:dtheta}{sec(theta)tan(theta)} = int u^2 - 1 :du = frac{u^3}{3} - u + C
                end{equation}



                Where $C$ is the constant of integration.



                Now $u = sec(theta)$ and $x = tan(theta)$ and so $u = sec(arctan(x)) = sqrt{x^2 + 1}$



                Thus,



                begin{equation}
                I =int frac{x^3}{sqrt {x^2+1}}dx = frac{1}{3}left( sqrt {x^2+1}right)^3 - sqrt {x^2+1} + C = frac{1}{3}left(x^2+1right)^{frac{3}{2}} - sqrt {x^2+1} + C
                end{equation}



                Method 2:



                begin{align}
                I &=int frac{x^3}{sqrt {x^2+1}}dx = int x cdot frac{x^2}{sqrt {x^2+1}}dx \
                &= int x cdot frac{x^2 + 1 - 1}{sqrt {x^2+1}}dx = int x left( sqrt {x^2+1} - frac{1}{sqrt{x^2+1}}right)dx
                end{align}



                Here let $u = x^2 + 1$:



                begin{align}
                I &= int x left( sqrt {u} - frac{1}{sqrt{u}}right)frac{du}{2x} = frac{1}{2}left[int left( u^{frac{1}{2}} - u^{-frac{1}{2}}right)duright] = frac{1}{2}left[frac{ u^{frac{3}{2}}}{frac{3}{2}} + frac{ u^{frac{1}{2}}}{frac{1}{2}} right] + C \
                &= frac{1}{3}u^{frac{3}{2}} + u^{frac{1}{2}} + C = frac{1}{3}left(x^2 + 1right)^{frac{3}{2}} + left(x^2 + 1right)^{frac{1}{2}} + C
                end{align}



                Where $C$ is the constant of integration.






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Method 1:



                  Another approach using trigonometric substitutions



                  begin{equation}
                  I =int frac{x^3}{sqrt {x^2+1}}dx
                  end{equation}



                  Here let $x = tan(theta)$ we arrive at:



                  begin{align}
                  I &=int frac{tan^3(theta)}{sqrt {tan^2(theta)+1}}sec^2(theta):dtheta = int frac{tan^3(theta)}{sec(theta)}sec^2(theta):dtheta\
                  &= int tan^3(theta)sec(theta):dtheta = int sec(theta)tan(theta) tan^2(theta):dtheta \
                  &= int sec(theta)tan(theta) left(sec^2(theta) - 1right):dtheta
                  end{align}



                  Now let $u = sec(theta)$ to yield:



                  begin{equation}
                  int sec(theta)tan(theta)left(u^2 - 1right) frac{:dtheta}{sec(theta)tan(theta)} = int u^2 - 1 :du = frac{u^3}{3} - u + C
                  end{equation}



                  Where $C$ is the constant of integration.



                  Now $u = sec(theta)$ and $x = tan(theta)$ and so $u = sec(arctan(x)) = sqrt{x^2 + 1}$



                  Thus,



                  begin{equation}
                  I =int frac{x^3}{sqrt {x^2+1}}dx = frac{1}{3}left( sqrt {x^2+1}right)^3 - sqrt {x^2+1} + C = frac{1}{3}left(x^2+1right)^{frac{3}{2}} - sqrt {x^2+1} + C
                  end{equation}



                  Method 2:



                  begin{align}
                  I &=int frac{x^3}{sqrt {x^2+1}}dx = int x cdot frac{x^2}{sqrt {x^2+1}}dx \
                  &= int x cdot frac{x^2 + 1 - 1}{sqrt {x^2+1}}dx = int x left( sqrt {x^2+1} - frac{1}{sqrt{x^2+1}}right)dx
                  end{align}



                  Here let $u = x^2 + 1$:



                  begin{align}
                  I &= int x left( sqrt {u} - frac{1}{sqrt{u}}right)frac{du}{2x} = frac{1}{2}left[int left( u^{frac{1}{2}} - u^{-frac{1}{2}}right)duright] = frac{1}{2}left[frac{ u^{frac{3}{2}}}{frac{3}{2}} + frac{ u^{frac{1}{2}}}{frac{1}{2}} right] + C \
                  &= frac{1}{3}u^{frac{3}{2}} + u^{frac{1}{2}} + C = frac{1}{3}left(x^2 + 1right)^{frac{3}{2}} + left(x^2 + 1right)^{frac{1}{2}} + C
                  end{align}



                  Where $C$ is the constant of integration.






                  share|cite|improve this answer











                  $endgroup$



                  Method 1:



                  Another approach using trigonometric substitutions



                  begin{equation}
                  I =int frac{x^3}{sqrt {x^2+1}}dx
                  end{equation}



                  Here let $x = tan(theta)$ we arrive at:



                  begin{align}
                  I &=int frac{tan^3(theta)}{sqrt {tan^2(theta)+1}}sec^2(theta):dtheta = int frac{tan^3(theta)}{sec(theta)}sec^2(theta):dtheta\
                  &= int tan^3(theta)sec(theta):dtheta = int sec(theta)tan(theta) tan^2(theta):dtheta \
                  &= int sec(theta)tan(theta) left(sec^2(theta) - 1right):dtheta
                  end{align}



                  Now let $u = sec(theta)$ to yield:



                  begin{equation}
                  int sec(theta)tan(theta)left(u^2 - 1right) frac{:dtheta}{sec(theta)tan(theta)} = int u^2 - 1 :du = frac{u^3}{3} - u + C
                  end{equation}



                  Where $C$ is the constant of integration.



                  Now $u = sec(theta)$ and $x = tan(theta)$ and so $u = sec(arctan(x)) = sqrt{x^2 + 1}$



                  Thus,



                  begin{equation}
                  I =int frac{x^3}{sqrt {x^2+1}}dx = frac{1}{3}left( sqrt {x^2+1}right)^3 - sqrt {x^2+1} + C = frac{1}{3}left(x^2+1right)^{frac{3}{2}} - sqrt {x^2+1} + C
                  end{equation}



                  Method 2:



                  begin{align}
                  I &=int frac{x^3}{sqrt {x^2+1}}dx = int x cdot frac{x^2}{sqrt {x^2+1}}dx \
                  &= int x cdot frac{x^2 + 1 - 1}{sqrt {x^2+1}}dx = int x left( sqrt {x^2+1} - frac{1}{sqrt{x^2+1}}right)dx
                  end{align}



                  Here let $u = x^2 + 1$:



                  begin{align}
                  I &= int x left( sqrt {u} - frac{1}{sqrt{u}}right)frac{du}{2x} = frac{1}{2}left[int left( u^{frac{1}{2}} - u^{-frac{1}{2}}right)duright] = frac{1}{2}left[frac{ u^{frac{3}{2}}}{frac{3}{2}} + frac{ u^{frac{1}{2}}}{frac{1}{2}} right] + C \
                  &= frac{1}{3}u^{frac{3}{2}} + u^{frac{1}{2}} + C = frac{1}{3}left(x^2 + 1right)^{frac{3}{2}} + left(x^2 + 1right)^{frac{1}{2}} + C
                  end{align}



                  Where $C$ is the constant of integration.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 21 '18 at 4:46

























                  answered Dec 21 '18 at 4:34







                  user150203





































                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047713%2fhow-to-evaluate-int-fracx3-sqrt-x21dx%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Plaza Victoria

                      In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

                      How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...