Show that $(b-a)[I(0le ale b)-I(ble ale0)]=int_0^b[I(ale x)-I(ale0)]dx$
$begingroup$
Show that
$$(b-a)cdot[I(0le ale b)-I(ble ale0)]=int_0^b[I(ale x)-I(ale0)]dx,$$
where $I(cdot)$ is the index function.
By definition, this equation can be verified. Does it have an straightforward proof or how can one observe this equation?
calculus algebra-precalculus analysis
$endgroup$
add a comment |
$begingroup$
Show that
$$(b-a)cdot[I(0le ale b)-I(ble ale0)]=int_0^b[I(ale x)-I(ale0)]dx,$$
where $I(cdot)$ is the index function.
By definition, this equation can be verified. Does it have an straightforward proof or how can one observe this equation?
calculus algebra-precalculus analysis
$endgroup$
add a comment |
$begingroup$
Show that
$$(b-a)cdot[I(0le ale b)-I(ble ale0)]=int_0^b[I(ale x)-I(ale0)]dx,$$
where $I(cdot)$ is the index function.
By definition, this equation can be verified. Does it have an straightforward proof or how can one observe this equation?
calculus algebra-precalculus analysis
$endgroup$
Show that
$$(b-a)cdot[I(0le ale b)-I(ble ale0)]=int_0^b[I(ale x)-I(ale0)]dx,$$
where $I(cdot)$ is the index function.
By definition, this equation can be verified. Does it have an straightforward proof or how can one observe this equation?
calculus algebra-precalculus analysis
calculus algebra-precalculus analysis
edited Dec 21 '18 at 18:46
DisintegratingByParts
60.4k42681
60.4k42681
asked Dec 21 '18 at 18:03
J.MikeJ.Mike
343110
343110
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
I think we can evaluate both sides of equality and prove it. Let us first evaluate the integral on the RHS. consider two cases:
$$begin{align} &1. quad a ge 0 \
&2. quad a<0 \
end{align}$$
For the first case we have $I(ale0) = 0$, so the integral boils down to $int_0^bI(ale x)dx$.
This integral is equal to: $$ int_0^bI(ale x)dx = begin{cases} 0 qquad qquad qquad quad ; a ge b\ int_a^bI(ale x)dx qquad a<bend{cases} = begin{cases} 0 quad qquad ; age b \ (b-a) quad a<b end{cases}$$
For the second case we have $I(ale0) = 1$ which means $$int_0^b[I(ale x)-I(ale0)]dx = int_0^b(I(ale x)-1)dx = left(int_0^bI(ale x)dx right) -b = int_0^bdx-b = 0 $$
Altogether we have $$ int_0^b[I(ale x)-I(ale0)]dx = begin{cases}0 qquad qquad quad age 0 , bge0 , age b\ (b-a) quad ;;;;; age0 , bge 0, a<b\ 0 qquad qquad quad a<0,bge0 end{cases}$$
since in this case $a<0$.
Also we had in mind that $b>0$. If $b<0$ it is similar to the previous state with a little change in conditions:
$$ int_0^b[I(ale x)-I(ale0)]dx = begin{cases}0 qquad qquad quad age 0 , b<0 , \ -(b-a) quad ;; a<0 , b< 0, a > b\ 0 qquad qquad
quad a<0,b<0, b<aend{cases}$$
Please notice that when $a<0,b<0,a>b$ this means $|a|<|b|$ so the second one is obtained as follow: $$int_0^b[I(ale x)-I(ale0)]dx = int_0^b[I(ale x)-1]dx = int_b^0[1-I(ale x)]dx =int_b^a dx = (a-b)=-(b-a) qquad qquad text{when} qquad a<0 , b< 0, a > b $$
Now consider the LHS. for the LHS we have
$$(b-a)cdot[I(0le ale b)-I(ble ale0)] = begin{cases} 0 qquad qquad quad age 0 , b<0 , \ -(b-a) quad ;; a<0 , b< 0, a > b\ 0 qquad qquad
quad a<0,b<0, b<a \ 0 qquad qquad quad age 0 , bge0 , age b\ (b-a) quad ;;;;; age0 , bge 0, a<b\ 0 qquad qquad quad a<0,bge0 end{cases}$$ which are exactly the same we got from the RHS, only a simple inspection is needed. Sorry for exhaustive explanation but i always wanted someone to explain such integrals to me this way not short and intractable solution. Hope this would do.
$endgroup$
$begingroup$
Thank you for your kind answer and detailed explanation.
$endgroup$
– J.Mike
Dec 21 '18 at 22:27
$begingroup$
my pleasure dude!
$endgroup$
– K.K.McDonald
Dec 23 '18 at 7:36
add a comment |
$begingroup$
Write $int_0^b$ as $int_a^b-int_a^0$. Evaluate
$
J:=int_a^b [I(ale x)-I(ale0)]dx$ by arguing two cases:
If $ale b$, then $I(ale x)=1$ when $xin[a,b]$, so
$$J=int_a^b[1-I(ale0)]dx=int_a^b I(a>0)dx=(b-a)I(a>0).tag1$$If $a>b$, then $int_a^b=-int_b^a$, and $I(ale x)=0$ when $xin[b,a]$, so
$$J=-int_b^a [I(ale x)-I(ale0)]dx=int_b^aI(ale0)dx=(a-b)I(ale0).tag2$$
Combining these two cases gives
$$
begin{align}J&=(b-a)I(a>0)I(ale b)+(a-b)I(ale0)I(a>b)\
&=(b-a)I(0<ale b)-(b-a)I(b<ale0).tag3
end{align}$$
This agrees with the LHS of the asserted identity up to some fussiness with $<$ vs $le$; formula (3) is correct for the edge case $b>a=0$ whereas the stated LHS is wrong.
This implies the second integral $int_a^0$ must be zero, which can be verified by plugging $b=0$ into (3). (Apply the general case to the special case!)
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048756%2fshow-that-b-ai0-le-a-le-b-ib-le-a-le0-int-0bia-le-x-ia-le0dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think we can evaluate both sides of equality and prove it. Let us first evaluate the integral on the RHS. consider two cases:
$$begin{align} &1. quad a ge 0 \
&2. quad a<0 \
end{align}$$
For the first case we have $I(ale0) = 0$, so the integral boils down to $int_0^bI(ale x)dx$.
This integral is equal to: $$ int_0^bI(ale x)dx = begin{cases} 0 qquad qquad qquad quad ; a ge b\ int_a^bI(ale x)dx qquad a<bend{cases} = begin{cases} 0 quad qquad ; age b \ (b-a) quad a<b end{cases}$$
For the second case we have $I(ale0) = 1$ which means $$int_0^b[I(ale x)-I(ale0)]dx = int_0^b(I(ale x)-1)dx = left(int_0^bI(ale x)dx right) -b = int_0^bdx-b = 0 $$
Altogether we have $$ int_0^b[I(ale x)-I(ale0)]dx = begin{cases}0 qquad qquad quad age 0 , bge0 , age b\ (b-a) quad ;;;;; age0 , bge 0, a<b\ 0 qquad qquad quad a<0,bge0 end{cases}$$
since in this case $a<0$.
Also we had in mind that $b>0$. If $b<0$ it is similar to the previous state with a little change in conditions:
$$ int_0^b[I(ale x)-I(ale0)]dx = begin{cases}0 qquad qquad quad age 0 , b<0 , \ -(b-a) quad ;; a<0 , b< 0, a > b\ 0 qquad qquad
quad a<0,b<0, b<aend{cases}$$
Please notice that when $a<0,b<0,a>b$ this means $|a|<|b|$ so the second one is obtained as follow: $$int_0^b[I(ale x)-I(ale0)]dx = int_0^b[I(ale x)-1]dx = int_b^0[1-I(ale x)]dx =int_b^a dx = (a-b)=-(b-a) qquad qquad text{when} qquad a<0 , b< 0, a > b $$
Now consider the LHS. for the LHS we have
$$(b-a)cdot[I(0le ale b)-I(ble ale0)] = begin{cases} 0 qquad qquad quad age 0 , b<0 , \ -(b-a) quad ;; a<0 , b< 0, a > b\ 0 qquad qquad
quad a<0,b<0, b<a \ 0 qquad qquad quad age 0 , bge0 , age b\ (b-a) quad ;;;;; age0 , bge 0, a<b\ 0 qquad qquad quad a<0,bge0 end{cases}$$ which are exactly the same we got from the RHS, only a simple inspection is needed. Sorry for exhaustive explanation but i always wanted someone to explain such integrals to me this way not short and intractable solution. Hope this would do.
$endgroup$
$begingroup$
Thank you for your kind answer and detailed explanation.
$endgroup$
– J.Mike
Dec 21 '18 at 22:27
$begingroup$
my pleasure dude!
$endgroup$
– K.K.McDonald
Dec 23 '18 at 7:36
add a comment |
$begingroup$
I think we can evaluate both sides of equality and prove it. Let us first evaluate the integral on the RHS. consider two cases:
$$begin{align} &1. quad a ge 0 \
&2. quad a<0 \
end{align}$$
For the first case we have $I(ale0) = 0$, so the integral boils down to $int_0^bI(ale x)dx$.
This integral is equal to: $$ int_0^bI(ale x)dx = begin{cases} 0 qquad qquad qquad quad ; a ge b\ int_a^bI(ale x)dx qquad a<bend{cases} = begin{cases} 0 quad qquad ; age b \ (b-a) quad a<b end{cases}$$
For the second case we have $I(ale0) = 1$ which means $$int_0^b[I(ale x)-I(ale0)]dx = int_0^b(I(ale x)-1)dx = left(int_0^bI(ale x)dx right) -b = int_0^bdx-b = 0 $$
Altogether we have $$ int_0^b[I(ale x)-I(ale0)]dx = begin{cases}0 qquad qquad quad age 0 , bge0 , age b\ (b-a) quad ;;;;; age0 , bge 0, a<b\ 0 qquad qquad quad a<0,bge0 end{cases}$$
since in this case $a<0$.
Also we had in mind that $b>0$. If $b<0$ it is similar to the previous state with a little change in conditions:
$$ int_0^b[I(ale x)-I(ale0)]dx = begin{cases}0 qquad qquad quad age 0 , b<0 , \ -(b-a) quad ;; a<0 , b< 0, a > b\ 0 qquad qquad
quad a<0,b<0, b<aend{cases}$$
Please notice that when $a<0,b<0,a>b$ this means $|a|<|b|$ so the second one is obtained as follow: $$int_0^b[I(ale x)-I(ale0)]dx = int_0^b[I(ale x)-1]dx = int_b^0[1-I(ale x)]dx =int_b^a dx = (a-b)=-(b-a) qquad qquad text{when} qquad a<0 , b< 0, a > b $$
Now consider the LHS. for the LHS we have
$$(b-a)cdot[I(0le ale b)-I(ble ale0)] = begin{cases} 0 qquad qquad quad age 0 , b<0 , \ -(b-a) quad ;; a<0 , b< 0, a > b\ 0 qquad qquad
quad a<0,b<0, b<a \ 0 qquad qquad quad age 0 , bge0 , age b\ (b-a) quad ;;;;; age0 , bge 0, a<b\ 0 qquad qquad quad a<0,bge0 end{cases}$$ which are exactly the same we got from the RHS, only a simple inspection is needed. Sorry for exhaustive explanation but i always wanted someone to explain such integrals to me this way not short and intractable solution. Hope this would do.
$endgroup$
$begingroup$
Thank you for your kind answer and detailed explanation.
$endgroup$
– J.Mike
Dec 21 '18 at 22:27
$begingroup$
my pleasure dude!
$endgroup$
– K.K.McDonald
Dec 23 '18 at 7:36
add a comment |
$begingroup$
I think we can evaluate both sides of equality and prove it. Let us first evaluate the integral on the RHS. consider two cases:
$$begin{align} &1. quad a ge 0 \
&2. quad a<0 \
end{align}$$
For the first case we have $I(ale0) = 0$, so the integral boils down to $int_0^bI(ale x)dx$.
This integral is equal to: $$ int_0^bI(ale x)dx = begin{cases} 0 qquad qquad qquad quad ; a ge b\ int_a^bI(ale x)dx qquad a<bend{cases} = begin{cases} 0 quad qquad ; age b \ (b-a) quad a<b end{cases}$$
For the second case we have $I(ale0) = 1$ which means $$int_0^b[I(ale x)-I(ale0)]dx = int_0^b(I(ale x)-1)dx = left(int_0^bI(ale x)dx right) -b = int_0^bdx-b = 0 $$
Altogether we have $$ int_0^b[I(ale x)-I(ale0)]dx = begin{cases}0 qquad qquad quad age 0 , bge0 , age b\ (b-a) quad ;;;;; age0 , bge 0, a<b\ 0 qquad qquad quad a<0,bge0 end{cases}$$
since in this case $a<0$.
Also we had in mind that $b>0$. If $b<0$ it is similar to the previous state with a little change in conditions:
$$ int_0^b[I(ale x)-I(ale0)]dx = begin{cases}0 qquad qquad quad age 0 , b<0 , \ -(b-a) quad ;; a<0 , b< 0, a > b\ 0 qquad qquad
quad a<0,b<0, b<aend{cases}$$
Please notice that when $a<0,b<0,a>b$ this means $|a|<|b|$ so the second one is obtained as follow: $$int_0^b[I(ale x)-I(ale0)]dx = int_0^b[I(ale x)-1]dx = int_b^0[1-I(ale x)]dx =int_b^a dx = (a-b)=-(b-a) qquad qquad text{when} qquad a<0 , b< 0, a > b $$
Now consider the LHS. for the LHS we have
$$(b-a)cdot[I(0le ale b)-I(ble ale0)] = begin{cases} 0 qquad qquad quad age 0 , b<0 , \ -(b-a) quad ;; a<0 , b< 0, a > b\ 0 qquad qquad
quad a<0,b<0, b<a \ 0 qquad qquad quad age 0 , bge0 , age b\ (b-a) quad ;;;;; age0 , bge 0, a<b\ 0 qquad qquad quad a<0,bge0 end{cases}$$ which are exactly the same we got from the RHS, only a simple inspection is needed. Sorry for exhaustive explanation but i always wanted someone to explain such integrals to me this way not short and intractable solution. Hope this would do.
$endgroup$
I think we can evaluate both sides of equality and prove it. Let us first evaluate the integral on the RHS. consider two cases:
$$begin{align} &1. quad a ge 0 \
&2. quad a<0 \
end{align}$$
For the first case we have $I(ale0) = 0$, so the integral boils down to $int_0^bI(ale x)dx$.
This integral is equal to: $$ int_0^bI(ale x)dx = begin{cases} 0 qquad qquad qquad quad ; a ge b\ int_a^bI(ale x)dx qquad a<bend{cases} = begin{cases} 0 quad qquad ; age b \ (b-a) quad a<b end{cases}$$
For the second case we have $I(ale0) = 1$ which means $$int_0^b[I(ale x)-I(ale0)]dx = int_0^b(I(ale x)-1)dx = left(int_0^bI(ale x)dx right) -b = int_0^bdx-b = 0 $$
Altogether we have $$ int_0^b[I(ale x)-I(ale0)]dx = begin{cases}0 qquad qquad quad age 0 , bge0 , age b\ (b-a) quad ;;;;; age0 , bge 0, a<b\ 0 qquad qquad quad a<0,bge0 end{cases}$$
since in this case $a<0$.
Also we had in mind that $b>0$. If $b<0$ it is similar to the previous state with a little change in conditions:
$$ int_0^b[I(ale x)-I(ale0)]dx = begin{cases}0 qquad qquad quad age 0 , b<0 , \ -(b-a) quad ;; a<0 , b< 0, a > b\ 0 qquad qquad
quad a<0,b<0, b<aend{cases}$$
Please notice that when $a<0,b<0,a>b$ this means $|a|<|b|$ so the second one is obtained as follow: $$int_0^b[I(ale x)-I(ale0)]dx = int_0^b[I(ale x)-1]dx = int_b^0[1-I(ale x)]dx =int_b^a dx = (a-b)=-(b-a) qquad qquad text{when} qquad a<0 , b< 0, a > b $$
Now consider the LHS. for the LHS we have
$$(b-a)cdot[I(0le ale b)-I(ble ale0)] = begin{cases} 0 qquad qquad quad age 0 , b<0 , \ -(b-a) quad ;; a<0 , b< 0, a > b\ 0 qquad qquad
quad a<0,b<0, b<a \ 0 qquad qquad quad age 0 , bge0 , age b\ (b-a) quad ;;;;; age0 , bge 0, a<b\ 0 qquad qquad quad a<0,bge0 end{cases}$$ which are exactly the same we got from the RHS, only a simple inspection is needed. Sorry for exhaustive explanation but i always wanted someone to explain such integrals to me this way not short and intractable solution. Hope this would do.
answered Dec 21 '18 at 19:08
K.K.McDonaldK.K.McDonald
964618
964618
$begingroup$
Thank you for your kind answer and detailed explanation.
$endgroup$
– J.Mike
Dec 21 '18 at 22:27
$begingroup$
my pleasure dude!
$endgroup$
– K.K.McDonald
Dec 23 '18 at 7:36
add a comment |
$begingroup$
Thank you for your kind answer and detailed explanation.
$endgroup$
– J.Mike
Dec 21 '18 at 22:27
$begingroup$
my pleasure dude!
$endgroup$
– K.K.McDonald
Dec 23 '18 at 7:36
$begingroup$
Thank you for your kind answer and detailed explanation.
$endgroup$
– J.Mike
Dec 21 '18 at 22:27
$begingroup$
Thank you for your kind answer and detailed explanation.
$endgroup$
– J.Mike
Dec 21 '18 at 22:27
$begingroup$
my pleasure dude!
$endgroup$
– K.K.McDonald
Dec 23 '18 at 7:36
$begingroup$
my pleasure dude!
$endgroup$
– K.K.McDonald
Dec 23 '18 at 7:36
add a comment |
$begingroup$
Write $int_0^b$ as $int_a^b-int_a^0$. Evaluate
$
J:=int_a^b [I(ale x)-I(ale0)]dx$ by arguing two cases:
If $ale b$, then $I(ale x)=1$ when $xin[a,b]$, so
$$J=int_a^b[1-I(ale0)]dx=int_a^b I(a>0)dx=(b-a)I(a>0).tag1$$If $a>b$, then $int_a^b=-int_b^a$, and $I(ale x)=0$ when $xin[b,a]$, so
$$J=-int_b^a [I(ale x)-I(ale0)]dx=int_b^aI(ale0)dx=(a-b)I(ale0).tag2$$
Combining these two cases gives
$$
begin{align}J&=(b-a)I(a>0)I(ale b)+(a-b)I(ale0)I(a>b)\
&=(b-a)I(0<ale b)-(b-a)I(b<ale0).tag3
end{align}$$
This agrees with the LHS of the asserted identity up to some fussiness with $<$ vs $le$; formula (3) is correct for the edge case $b>a=0$ whereas the stated LHS is wrong.
This implies the second integral $int_a^0$ must be zero, which can be verified by plugging $b=0$ into (3). (Apply the general case to the special case!)
$endgroup$
add a comment |
$begingroup$
Write $int_0^b$ as $int_a^b-int_a^0$. Evaluate
$
J:=int_a^b [I(ale x)-I(ale0)]dx$ by arguing two cases:
If $ale b$, then $I(ale x)=1$ when $xin[a,b]$, so
$$J=int_a^b[1-I(ale0)]dx=int_a^b I(a>0)dx=(b-a)I(a>0).tag1$$If $a>b$, then $int_a^b=-int_b^a$, and $I(ale x)=0$ when $xin[b,a]$, so
$$J=-int_b^a [I(ale x)-I(ale0)]dx=int_b^aI(ale0)dx=(a-b)I(ale0).tag2$$
Combining these two cases gives
$$
begin{align}J&=(b-a)I(a>0)I(ale b)+(a-b)I(ale0)I(a>b)\
&=(b-a)I(0<ale b)-(b-a)I(b<ale0).tag3
end{align}$$
This agrees with the LHS of the asserted identity up to some fussiness with $<$ vs $le$; formula (3) is correct for the edge case $b>a=0$ whereas the stated LHS is wrong.
This implies the second integral $int_a^0$ must be zero, which can be verified by plugging $b=0$ into (3). (Apply the general case to the special case!)
$endgroup$
add a comment |
$begingroup$
Write $int_0^b$ as $int_a^b-int_a^0$. Evaluate
$
J:=int_a^b [I(ale x)-I(ale0)]dx$ by arguing two cases:
If $ale b$, then $I(ale x)=1$ when $xin[a,b]$, so
$$J=int_a^b[1-I(ale0)]dx=int_a^b I(a>0)dx=(b-a)I(a>0).tag1$$If $a>b$, then $int_a^b=-int_b^a$, and $I(ale x)=0$ when $xin[b,a]$, so
$$J=-int_b^a [I(ale x)-I(ale0)]dx=int_b^aI(ale0)dx=(a-b)I(ale0).tag2$$
Combining these two cases gives
$$
begin{align}J&=(b-a)I(a>0)I(ale b)+(a-b)I(ale0)I(a>b)\
&=(b-a)I(0<ale b)-(b-a)I(b<ale0).tag3
end{align}$$
This agrees with the LHS of the asserted identity up to some fussiness with $<$ vs $le$; formula (3) is correct for the edge case $b>a=0$ whereas the stated LHS is wrong.
This implies the second integral $int_a^0$ must be zero, which can be verified by plugging $b=0$ into (3). (Apply the general case to the special case!)
$endgroup$
Write $int_0^b$ as $int_a^b-int_a^0$. Evaluate
$
J:=int_a^b [I(ale x)-I(ale0)]dx$ by arguing two cases:
If $ale b$, then $I(ale x)=1$ when $xin[a,b]$, so
$$J=int_a^b[1-I(ale0)]dx=int_a^b I(a>0)dx=(b-a)I(a>0).tag1$$If $a>b$, then $int_a^b=-int_b^a$, and $I(ale x)=0$ when $xin[b,a]$, so
$$J=-int_b^a [I(ale x)-I(ale0)]dx=int_b^aI(ale0)dx=(a-b)I(ale0).tag2$$
Combining these two cases gives
$$
begin{align}J&=(b-a)I(a>0)I(ale b)+(a-b)I(ale0)I(a>b)\
&=(b-a)I(0<ale b)-(b-a)I(b<ale0).tag3
end{align}$$
This agrees with the LHS of the asserted identity up to some fussiness with $<$ vs $le$; formula (3) is correct for the edge case $b>a=0$ whereas the stated LHS is wrong.
This implies the second integral $int_a^0$ must be zero, which can be verified by plugging $b=0$ into (3). (Apply the general case to the special case!)
edited Dec 23 '18 at 6:09
answered Dec 21 '18 at 22:30
grand_chatgrand_chat
20.5k11327
20.5k11327
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048756%2fshow-that-b-ai0-le-a-le-b-ib-le-a-le0-int-0bia-le-x-ia-le0dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown