Use the renewal equation to show that the renewal function of a Poisson process
$begingroup$
Use the renewal equation to show that the renewal function of a
Poisson process with rate $lambda > 0$ is $m(t) = lambda t$.
stochastic-processes poisson-process
$endgroup$
add a comment |
$begingroup$
Use the renewal equation to show that the renewal function of a
Poisson process with rate $lambda > 0$ is $m(t) = lambda t$.
stochastic-processes poisson-process
$endgroup$
add a comment |
$begingroup$
Use the renewal equation to show that the renewal function of a
Poisson process with rate $lambda > 0$ is $m(t) = lambda t$.
stochastic-processes poisson-process
$endgroup$
Use the renewal equation to show that the renewal function of a
Poisson process with rate $lambda > 0$ is $m(t) = lambda t$.
stochastic-processes poisson-process
stochastic-processes poisson-process
edited Dec 21 '18 at 17:55
Math1000
19.4k31746
19.4k31746
asked Dec 5 '15 at 5:15
zxc123zxc123
62
62
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The interrenewal distribution is exponential with rate $lambda$, so $F(t)=1-e^{-lambda t}$ and so the renewal equation gives us
begin{align}
m(t) &= F(t) + Fstar m(t)\
&= 1-e^{-lambda t} + int_0^t m(t-s)lambda e^{-lambda(s)} mathsf ds\
&= 1-e^{-lambda t} + lambda e^{-lambda t}int_0^t m(x)e^{lambda x} mathsf dx
end{align}
(with the substitution $x=t-s$). Multiplying by $e^{lambda t}$ yields
$$e^{lambda t}m(t) = e^{lambda t} -1 +lambdaint_0^t m(x)e^{lambda x} mathsf dx, $$
and after differentiating with respect to $t$ we have
$$lambda e^{lambda t}m(t) + e^{lambda t}m'(t) = lambda e^{lambda t}+lambda e^{lambda t}m(t). $$ Therefore $m'(t)=lambda$, and as $m(0)=0$, it follows that $m(t)=lambda t$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1560604%2fuse-the-renewal-equation-to-show-that-the-renewal-function-of-a-poisson-process%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The interrenewal distribution is exponential with rate $lambda$, so $F(t)=1-e^{-lambda t}$ and so the renewal equation gives us
begin{align}
m(t) &= F(t) + Fstar m(t)\
&= 1-e^{-lambda t} + int_0^t m(t-s)lambda e^{-lambda(s)} mathsf ds\
&= 1-e^{-lambda t} + lambda e^{-lambda t}int_0^t m(x)e^{lambda x} mathsf dx
end{align}
(with the substitution $x=t-s$). Multiplying by $e^{lambda t}$ yields
$$e^{lambda t}m(t) = e^{lambda t} -1 +lambdaint_0^t m(x)e^{lambda x} mathsf dx, $$
and after differentiating with respect to $t$ we have
$$lambda e^{lambda t}m(t) + e^{lambda t}m'(t) = lambda e^{lambda t}+lambda e^{lambda t}m(t). $$ Therefore $m'(t)=lambda$, and as $m(0)=0$, it follows that $m(t)=lambda t$.
$endgroup$
add a comment |
$begingroup$
The interrenewal distribution is exponential with rate $lambda$, so $F(t)=1-e^{-lambda t}$ and so the renewal equation gives us
begin{align}
m(t) &= F(t) + Fstar m(t)\
&= 1-e^{-lambda t} + int_0^t m(t-s)lambda e^{-lambda(s)} mathsf ds\
&= 1-e^{-lambda t} + lambda e^{-lambda t}int_0^t m(x)e^{lambda x} mathsf dx
end{align}
(with the substitution $x=t-s$). Multiplying by $e^{lambda t}$ yields
$$e^{lambda t}m(t) = e^{lambda t} -1 +lambdaint_0^t m(x)e^{lambda x} mathsf dx, $$
and after differentiating with respect to $t$ we have
$$lambda e^{lambda t}m(t) + e^{lambda t}m'(t) = lambda e^{lambda t}+lambda e^{lambda t}m(t). $$ Therefore $m'(t)=lambda$, and as $m(0)=0$, it follows that $m(t)=lambda t$.
$endgroup$
add a comment |
$begingroup$
The interrenewal distribution is exponential with rate $lambda$, so $F(t)=1-e^{-lambda t}$ and so the renewal equation gives us
begin{align}
m(t) &= F(t) + Fstar m(t)\
&= 1-e^{-lambda t} + int_0^t m(t-s)lambda e^{-lambda(s)} mathsf ds\
&= 1-e^{-lambda t} + lambda e^{-lambda t}int_0^t m(x)e^{lambda x} mathsf dx
end{align}
(with the substitution $x=t-s$). Multiplying by $e^{lambda t}$ yields
$$e^{lambda t}m(t) = e^{lambda t} -1 +lambdaint_0^t m(x)e^{lambda x} mathsf dx, $$
and after differentiating with respect to $t$ we have
$$lambda e^{lambda t}m(t) + e^{lambda t}m'(t) = lambda e^{lambda t}+lambda e^{lambda t}m(t). $$ Therefore $m'(t)=lambda$, and as $m(0)=0$, it follows that $m(t)=lambda t$.
$endgroup$
The interrenewal distribution is exponential with rate $lambda$, so $F(t)=1-e^{-lambda t}$ and so the renewal equation gives us
begin{align}
m(t) &= F(t) + Fstar m(t)\
&= 1-e^{-lambda t} + int_0^t m(t-s)lambda e^{-lambda(s)} mathsf ds\
&= 1-e^{-lambda t} + lambda e^{-lambda t}int_0^t m(x)e^{lambda x} mathsf dx
end{align}
(with the substitution $x=t-s$). Multiplying by $e^{lambda t}$ yields
$$e^{lambda t}m(t) = e^{lambda t} -1 +lambdaint_0^t m(x)e^{lambda x} mathsf dx, $$
and after differentiating with respect to $t$ we have
$$lambda e^{lambda t}m(t) + e^{lambda t}m'(t) = lambda e^{lambda t}+lambda e^{lambda t}m(t). $$ Therefore $m'(t)=lambda$, and as $m(0)=0$, it follows that $m(t)=lambda t$.
answered Feb 23 '16 at 0:48
Math1000Math1000
19.4k31746
19.4k31746
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1560604%2fuse-the-renewal-equation-to-show-that-the-renewal-function-of-a-poisson-process%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown