If $a+b+c=frac 1a +frac 1b +frac 1c$ then prove that $ab+bc+ca geq 3$












0












$begingroup$


Let $a,b,c$ be positive real numbers. $a+b+c=frac 1a +frac 1b +frac 1c$ then prove that $ab+bc+ca geq 3$



Using CS Inequality $(a+b+c)(frac 1a +frac 1b +frac 1c) >9$. then by hyp $frac 1a +frac 1b +frac 1c >3$. Now can we prove that $abc>1$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Yes, sorry. I will add that
    $endgroup$
    – Gimgim
    Nov 30 '18 at 4:24
















0












$begingroup$


Let $a,b,c$ be positive real numbers. $a+b+c=frac 1a +frac 1b +frac 1c$ then prove that $ab+bc+ca geq 3$



Using CS Inequality $(a+b+c)(frac 1a +frac 1b +frac 1c) >9$. then by hyp $frac 1a +frac 1b +frac 1c >3$. Now can we prove that $abc>1$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Yes, sorry. I will add that
    $endgroup$
    – Gimgim
    Nov 30 '18 at 4:24














0












0








0


2



$begingroup$


Let $a,b,c$ be positive real numbers. $a+b+c=frac 1a +frac 1b +frac 1c$ then prove that $ab+bc+ca geq 3$



Using CS Inequality $(a+b+c)(frac 1a +frac 1b +frac 1c) >9$. then by hyp $frac 1a +frac 1b +frac 1c >3$. Now can we prove that $abc>1$?










share|cite|improve this question











$endgroup$




Let $a,b,c$ be positive real numbers. $a+b+c=frac 1a +frac 1b +frac 1c$ then prove that $ab+bc+ca geq 3$



Using CS Inequality $(a+b+c)(frac 1a +frac 1b +frac 1c) >9$. then by hyp $frac 1a +frac 1b +frac 1c >3$. Now can we prove that $abc>1$?







inequality contest-math






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 30 '18 at 4:25







Gimgim

















asked Nov 30 '18 at 4:03









GimgimGimgim

1869




1869












  • $begingroup$
    Yes, sorry. I will add that
    $endgroup$
    – Gimgim
    Nov 30 '18 at 4:24


















  • $begingroup$
    Yes, sorry. I will add that
    $endgroup$
    – Gimgim
    Nov 30 '18 at 4:24
















$begingroup$
Yes, sorry. I will add that
$endgroup$
– Gimgim
Nov 30 '18 at 4:24




$begingroup$
Yes, sorry. I will add that
$endgroup$
– Gimgim
Nov 30 '18 at 4:24










1 Answer
1






active

oldest

votes


















2












$begingroup$

The condition gives $$1=frac{abc(a+b+c)}{ab+ac+bc}$$
Id est, we need to prove that
$$ab+ac+bcgeqfrac{3abc(a+b+c)}{ab+ac+bc}$$ or
$$(ab+ac+bc)^2geq3abc(a+b+c)$$ or
$$sum_{cyc}(a^2b^2+2a^2bc)geq3sum_{cyc}a^2bc$$ or
$$sum_{cyc}c^2(a-b)^2geq0.$$



If you want to prove that $abcgeq1$ then it's impossible because it's wrong.



Indeed, $$abcgeq1$$ it's
$$abcgeqleft(sqrt{frac{abc(a+b+c)}{ab+ac+bc}}right)^3$$ or
$$ab+ac+bcgeq(a+b+c)sqrt[3]{abc},$$ which is wrong for $arightarrow+infty.$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019617%2fif-abc-frac-1a-frac-1b-frac-1c-then-prove-that-abbcca-geq-3%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    The condition gives $$1=frac{abc(a+b+c)}{ab+ac+bc}$$
    Id est, we need to prove that
    $$ab+ac+bcgeqfrac{3abc(a+b+c)}{ab+ac+bc}$$ or
    $$(ab+ac+bc)^2geq3abc(a+b+c)$$ or
    $$sum_{cyc}(a^2b^2+2a^2bc)geq3sum_{cyc}a^2bc$$ or
    $$sum_{cyc}c^2(a-b)^2geq0.$$



    If you want to prove that $abcgeq1$ then it's impossible because it's wrong.



    Indeed, $$abcgeq1$$ it's
    $$abcgeqleft(sqrt{frac{abc(a+b+c)}{ab+ac+bc}}right)^3$$ or
    $$ab+ac+bcgeq(a+b+c)sqrt[3]{abc},$$ which is wrong for $arightarrow+infty.$






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      The condition gives $$1=frac{abc(a+b+c)}{ab+ac+bc}$$
      Id est, we need to prove that
      $$ab+ac+bcgeqfrac{3abc(a+b+c)}{ab+ac+bc}$$ or
      $$(ab+ac+bc)^2geq3abc(a+b+c)$$ or
      $$sum_{cyc}(a^2b^2+2a^2bc)geq3sum_{cyc}a^2bc$$ or
      $$sum_{cyc}c^2(a-b)^2geq0.$$



      If you want to prove that $abcgeq1$ then it's impossible because it's wrong.



      Indeed, $$abcgeq1$$ it's
      $$abcgeqleft(sqrt{frac{abc(a+b+c)}{ab+ac+bc}}right)^3$$ or
      $$ab+ac+bcgeq(a+b+c)sqrt[3]{abc},$$ which is wrong for $arightarrow+infty.$






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        The condition gives $$1=frac{abc(a+b+c)}{ab+ac+bc}$$
        Id est, we need to prove that
        $$ab+ac+bcgeqfrac{3abc(a+b+c)}{ab+ac+bc}$$ or
        $$(ab+ac+bc)^2geq3abc(a+b+c)$$ or
        $$sum_{cyc}(a^2b^2+2a^2bc)geq3sum_{cyc}a^2bc$$ or
        $$sum_{cyc}c^2(a-b)^2geq0.$$



        If you want to prove that $abcgeq1$ then it's impossible because it's wrong.



        Indeed, $$abcgeq1$$ it's
        $$abcgeqleft(sqrt{frac{abc(a+b+c)}{ab+ac+bc}}right)^3$$ or
        $$ab+ac+bcgeq(a+b+c)sqrt[3]{abc},$$ which is wrong for $arightarrow+infty.$






        share|cite|improve this answer











        $endgroup$



        The condition gives $$1=frac{abc(a+b+c)}{ab+ac+bc}$$
        Id est, we need to prove that
        $$ab+ac+bcgeqfrac{3abc(a+b+c)}{ab+ac+bc}$$ or
        $$(ab+ac+bc)^2geq3abc(a+b+c)$$ or
        $$sum_{cyc}(a^2b^2+2a^2bc)geq3sum_{cyc}a^2bc$$ or
        $$sum_{cyc}c^2(a-b)^2geq0.$$



        If you want to prove that $abcgeq1$ then it's impossible because it's wrong.



        Indeed, $$abcgeq1$$ it's
        $$abcgeqleft(sqrt{frac{abc(a+b+c)}{ab+ac+bc}}right)^3$$ or
        $$ab+ac+bcgeq(a+b+c)sqrt[3]{abc},$$ which is wrong for $arightarrow+infty.$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 30 '18 at 4:39

























        answered Nov 30 '18 at 4:31









        Michael RozenbergMichael Rozenberg

        98.3k1590188




        98.3k1590188






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019617%2fif-abc-frac-1a-frac-1b-frac-1c-then-prove-that-abbcca-geq-3%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa