If $a+b+c=frac 1a +frac 1b +frac 1c$ then prove that $ab+bc+ca geq 3$
$begingroup$
Let $a,b,c$ be positive real numbers. $a+b+c=frac 1a +frac 1b +frac 1c$ then prove that $ab+bc+ca geq 3$
Using CS Inequality $(a+b+c)(frac 1a +frac 1b +frac 1c) >9$. then by hyp $frac 1a +frac 1b +frac 1c >3$. Now can we prove that $abc>1$?
inequality contest-math
$endgroup$
add a comment |
$begingroup$
Let $a,b,c$ be positive real numbers. $a+b+c=frac 1a +frac 1b +frac 1c$ then prove that $ab+bc+ca geq 3$
Using CS Inequality $(a+b+c)(frac 1a +frac 1b +frac 1c) >9$. then by hyp $frac 1a +frac 1b +frac 1c >3$. Now can we prove that $abc>1$?
inequality contest-math
$endgroup$
$begingroup$
Yes, sorry. I will add that
$endgroup$
– Gimgim
Nov 30 '18 at 4:24
add a comment |
$begingroup$
Let $a,b,c$ be positive real numbers. $a+b+c=frac 1a +frac 1b +frac 1c$ then prove that $ab+bc+ca geq 3$
Using CS Inequality $(a+b+c)(frac 1a +frac 1b +frac 1c) >9$. then by hyp $frac 1a +frac 1b +frac 1c >3$. Now can we prove that $abc>1$?
inequality contest-math
$endgroup$
Let $a,b,c$ be positive real numbers. $a+b+c=frac 1a +frac 1b +frac 1c$ then prove that $ab+bc+ca geq 3$
Using CS Inequality $(a+b+c)(frac 1a +frac 1b +frac 1c) >9$. then by hyp $frac 1a +frac 1b +frac 1c >3$. Now can we prove that $abc>1$?
inequality contest-math
inequality contest-math
edited Nov 30 '18 at 4:25
Gimgim
asked Nov 30 '18 at 4:03
GimgimGimgim
1869
1869
$begingroup$
Yes, sorry. I will add that
$endgroup$
– Gimgim
Nov 30 '18 at 4:24
add a comment |
$begingroup$
Yes, sorry. I will add that
$endgroup$
– Gimgim
Nov 30 '18 at 4:24
$begingroup$
Yes, sorry. I will add that
$endgroup$
– Gimgim
Nov 30 '18 at 4:24
$begingroup$
Yes, sorry. I will add that
$endgroup$
– Gimgim
Nov 30 '18 at 4:24
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The condition gives $$1=frac{abc(a+b+c)}{ab+ac+bc}$$
Id est, we need to prove that
$$ab+ac+bcgeqfrac{3abc(a+b+c)}{ab+ac+bc}$$ or
$$(ab+ac+bc)^2geq3abc(a+b+c)$$ or
$$sum_{cyc}(a^2b^2+2a^2bc)geq3sum_{cyc}a^2bc$$ or
$$sum_{cyc}c^2(a-b)^2geq0.$$
If you want to prove that $abcgeq1$ then it's impossible because it's wrong.
Indeed, $$abcgeq1$$ it's
$$abcgeqleft(sqrt{frac{abc(a+b+c)}{ab+ac+bc}}right)^3$$ or
$$ab+ac+bcgeq(a+b+c)sqrt[3]{abc},$$ which is wrong for $arightarrow+infty.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019617%2fif-abc-frac-1a-frac-1b-frac-1c-then-prove-that-abbcca-geq-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The condition gives $$1=frac{abc(a+b+c)}{ab+ac+bc}$$
Id est, we need to prove that
$$ab+ac+bcgeqfrac{3abc(a+b+c)}{ab+ac+bc}$$ or
$$(ab+ac+bc)^2geq3abc(a+b+c)$$ or
$$sum_{cyc}(a^2b^2+2a^2bc)geq3sum_{cyc}a^2bc$$ or
$$sum_{cyc}c^2(a-b)^2geq0.$$
If you want to prove that $abcgeq1$ then it's impossible because it's wrong.
Indeed, $$abcgeq1$$ it's
$$abcgeqleft(sqrt{frac{abc(a+b+c)}{ab+ac+bc}}right)^3$$ or
$$ab+ac+bcgeq(a+b+c)sqrt[3]{abc},$$ which is wrong for $arightarrow+infty.$
$endgroup$
add a comment |
$begingroup$
The condition gives $$1=frac{abc(a+b+c)}{ab+ac+bc}$$
Id est, we need to prove that
$$ab+ac+bcgeqfrac{3abc(a+b+c)}{ab+ac+bc}$$ or
$$(ab+ac+bc)^2geq3abc(a+b+c)$$ or
$$sum_{cyc}(a^2b^2+2a^2bc)geq3sum_{cyc}a^2bc$$ or
$$sum_{cyc}c^2(a-b)^2geq0.$$
If you want to prove that $abcgeq1$ then it's impossible because it's wrong.
Indeed, $$abcgeq1$$ it's
$$abcgeqleft(sqrt{frac{abc(a+b+c)}{ab+ac+bc}}right)^3$$ or
$$ab+ac+bcgeq(a+b+c)sqrt[3]{abc},$$ which is wrong for $arightarrow+infty.$
$endgroup$
add a comment |
$begingroup$
The condition gives $$1=frac{abc(a+b+c)}{ab+ac+bc}$$
Id est, we need to prove that
$$ab+ac+bcgeqfrac{3abc(a+b+c)}{ab+ac+bc}$$ or
$$(ab+ac+bc)^2geq3abc(a+b+c)$$ or
$$sum_{cyc}(a^2b^2+2a^2bc)geq3sum_{cyc}a^2bc$$ or
$$sum_{cyc}c^2(a-b)^2geq0.$$
If you want to prove that $abcgeq1$ then it's impossible because it's wrong.
Indeed, $$abcgeq1$$ it's
$$abcgeqleft(sqrt{frac{abc(a+b+c)}{ab+ac+bc}}right)^3$$ or
$$ab+ac+bcgeq(a+b+c)sqrt[3]{abc},$$ which is wrong for $arightarrow+infty.$
$endgroup$
The condition gives $$1=frac{abc(a+b+c)}{ab+ac+bc}$$
Id est, we need to prove that
$$ab+ac+bcgeqfrac{3abc(a+b+c)}{ab+ac+bc}$$ or
$$(ab+ac+bc)^2geq3abc(a+b+c)$$ or
$$sum_{cyc}(a^2b^2+2a^2bc)geq3sum_{cyc}a^2bc$$ or
$$sum_{cyc}c^2(a-b)^2geq0.$$
If you want to prove that $abcgeq1$ then it's impossible because it's wrong.
Indeed, $$abcgeq1$$ it's
$$abcgeqleft(sqrt{frac{abc(a+b+c)}{ab+ac+bc}}right)^3$$ or
$$ab+ac+bcgeq(a+b+c)sqrt[3]{abc},$$ which is wrong for $arightarrow+infty.$
edited Nov 30 '18 at 4:39
answered Nov 30 '18 at 4:31
Michael RozenbergMichael Rozenberg
98.3k1590188
98.3k1590188
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019617%2fif-abc-frac-1a-frac-1b-frac-1c-then-prove-that-abbcca-geq-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Yes, sorry. I will add that
$endgroup$
– Gimgim
Nov 30 '18 at 4:24