Integrable function translation
$begingroup$
For real numbers α< β and γ > 0, show that if g is integrable over [α+γ, β+γ], then
$int_{alpha}^{beta} g(t+gamma)dt = int_{alpha+gamma}^{beta+gamma} g(t)dt$
Prove this change of variables formula by successively considering simple functions, bounded
measurable functions, nonnegative integrable functions, and general integrable functions.
My proof:
Let g be integrable over [α+γ, β+γ], then $g^+$and $g^-$ are nonegative integrable functions. There exist an increasing sequence ${φ_n }$ of nonegative simple functions such that $g^+=lim φ_n $. Now, since $∫_{α+γ}^{β+γ}χ_{[α+γ,β+γ]} (t) =m([α+γ,β+γ])=m([α,β]+γ)=∫_α^βχ_{[α,β]} (t+γ) $ for the given interval, we have that $∫_{α+γ}^{β+γ} φ_n (t)dt =∫_α^βφ_n (t+γ)dt$ for all n. By the Monotone Convergence Theorem , $∫_{α+γ}^{β+γ}g^+ (t)dt = ∫_α^βg^+(t+γ)dt $. Similarry for $g^-$. Thus $∫_α^βg(t+γ)dt = ∫_{α+γ}^{β+γ}g(t)dt$.
Is this correct or it need something else?
real-analysis integration proof-verification
$endgroup$
add a comment |
$begingroup$
For real numbers α< β and γ > 0, show that if g is integrable over [α+γ, β+γ], then
$int_{alpha}^{beta} g(t+gamma)dt = int_{alpha+gamma}^{beta+gamma} g(t)dt$
Prove this change of variables formula by successively considering simple functions, bounded
measurable functions, nonnegative integrable functions, and general integrable functions.
My proof:
Let g be integrable over [α+γ, β+γ], then $g^+$and $g^-$ are nonegative integrable functions. There exist an increasing sequence ${φ_n }$ of nonegative simple functions such that $g^+=lim φ_n $. Now, since $∫_{α+γ}^{β+γ}χ_{[α+γ,β+γ]} (t) =m([α+γ,β+γ])=m([α,β]+γ)=∫_α^βχ_{[α,β]} (t+γ) $ for the given interval, we have that $∫_{α+γ}^{β+γ} φ_n (t)dt =∫_α^βφ_n (t+γ)dt$ for all n. By the Monotone Convergence Theorem , $∫_{α+γ}^{β+γ}g^+ (t)dt = ∫_α^βg^+(t+γ)dt $. Similarry for $g^-$. Thus $∫_α^βg(t+γ)dt = ∫_{α+γ}^{β+γ}g(t)dt$.
Is this correct or it need something else?
real-analysis integration proof-verification
$endgroup$
add a comment |
$begingroup$
For real numbers α< β and γ > 0, show that if g is integrable over [α+γ, β+γ], then
$int_{alpha}^{beta} g(t+gamma)dt = int_{alpha+gamma}^{beta+gamma} g(t)dt$
Prove this change of variables formula by successively considering simple functions, bounded
measurable functions, nonnegative integrable functions, and general integrable functions.
My proof:
Let g be integrable over [α+γ, β+γ], then $g^+$and $g^-$ are nonegative integrable functions. There exist an increasing sequence ${φ_n }$ of nonegative simple functions such that $g^+=lim φ_n $. Now, since $∫_{α+γ}^{β+γ}χ_{[α+γ,β+γ]} (t) =m([α+γ,β+γ])=m([α,β]+γ)=∫_α^βχ_{[α,β]} (t+γ) $ for the given interval, we have that $∫_{α+γ}^{β+γ} φ_n (t)dt =∫_α^βφ_n (t+γ)dt$ for all n. By the Monotone Convergence Theorem , $∫_{α+γ}^{β+γ}g^+ (t)dt = ∫_α^βg^+(t+γ)dt $. Similarry for $g^-$. Thus $∫_α^βg(t+γ)dt = ∫_{α+γ}^{β+γ}g(t)dt$.
Is this correct or it need something else?
real-analysis integration proof-verification
$endgroup$
For real numbers α< β and γ > 0, show that if g is integrable over [α+γ, β+γ], then
$int_{alpha}^{beta} g(t+gamma)dt = int_{alpha+gamma}^{beta+gamma} g(t)dt$
Prove this change of variables formula by successively considering simple functions, bounded
measurable functions, nonnegative integrable functions, and general integrable functions.
My proof:
Let g be integrable over [α+γ, β+γ], then $g^+$and $g^-$ are nonegative integrable functions. There exist an increasing sequence ${φ_n }$ of nonegative simple functions such that $g^+=lim φ_n $. Now, since $∫_{α+γ}^{β+γ}χ_{[α+γ,β+γ]} (t) =m([α+γ,β+γ])=m([α,β]+γ)=∫_α^βχ_{[α,β]} (t+γ) $ for the given interval, we have that $∫_{α+γ}^{β+γ} φ_n (t)dt =∫_α^βφ_n (t+γ)dt$ for all n. By the Monotone Convergence Theorem , $∫_{α+γ}^{β+γ}g^+ (t)dt = ∫_α^βg^+(t+γ)dt $. Similarry for $g^-$. Thus $∫_α^βg(t+γ)dt = ∫_{α+γ}^{β+γ}g(t)dt$.
Is this correct or it need something else?
real-analysis integration proof-verification
real-analysis integration proof-verification
edited Dec 12 '18 at 13:58
GNUSupporter 8964民主女神 地下教會
13.7k72550
13.7k72550
asked Dec 12 '18 at 13:17
AligrusAligrus
304
304
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You need to prove the equality for $textit{arbitrary}$ indicator functions, then build the general case as you describe. So, let $E$ be measurable, and using latin letters for convenience, (in what follows $Ecap [a+c,b+c]$ may be empty, but that's ok):
$int^{b+c}_{a+c}chi_E(t)dt=m(Ecap[a+c,b+c])=m((E-c)cap[a,b])=int^b_achi_{E-c}(t)dt=int^b_achi_{E}(t+c)dt.$
The rest of your proof now goes through unchanged.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036673%2fintegrable-function-translation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You need to prove the equality for $textit{arbitrary}$ indicator functions, then build the general case as you describe. So, let $E$ be measurable, and using latin letters for convenience, (in what follows $Ecap [a+c,b+c]$ may be empty, but that's ok):
$int^{b+c}_{a+c}chi_E(t)dt=m(Ecap[a+c,b+c])=m((E-c)cap[a,b])=int^b_achi_{E-c}(t)dt=int^b_achi_{E}(t+c)dt.$
The rest of your proof now goes through unchanged.
$endgroup$
add a comment |
$begingroup$
You need to prove the equality for $textit{arbitrary}$ indicator functions, then build the general case as you describe. So, let $E$ be measurable, and using latin letters for convenience, (in what follows $Ecap [a+c,b+c]$ may be empty, but that's ok):
$int^{b+c}_{a+c}chi_E(t)dt=m(Ecap[a+c,b+c])=m((E-c)cap[a,b])=int^b_achi_{E-c}(t)dt=int^b_achi_{E}(t+c)dt.$
The rest of your proof now goes through unchanged.
$endgroup$
add a comment |
$begingroup$
You need to prove the equality for $textit{arbitrary}$ indicator functions, then build the general case as you describe. So, let $E$ be measurable, and using latin letters for convenience, (in what follows $Ecap [a+c,b+c]$ may be empty, but that's ok):
$int^{b+c}_{a+c}chi_E(t)dt=m(Ecap[a+c,b+c])=m((E-c)cap[a,b])=int^b_achi_{E-c}(t)dt=int^b_achi_{E}(t+c)dt.$
The rest of your proof now goes through unchanged.
$endgroup$
You need to prove the equality for $textit{arbitrary}$ indicator functions, then build the general case as you describe. So, let $E$ be measurable, and using latin letters for convenience, (in what follows $Ecap [a+c,b+c]$ may be empty, but that's ok):
$int^{b+c}_{a+c}chi_E(t)dt=m(Ecap[a+c,b+c])=m((E-c)cap[a,b])=int^b_achi_{E-c}(t)dt=int^b_achi_{E}(t+c)dt.$
The rest of your proof now goes through unchanged.
answered Dec 12 '18 at 16:10
MatematletaMatematleta
11.4k2920
11.4k2920
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036673%2fintegrable-function-translation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown