How to prove $|A^+|_2leq|A^{-1}_1|_2$ in the question?












1












$begingroup$


Suppose the $m×n$ matrix $A$ has the form $A=begin{pmatrix}
A_1 \
A_2
end{pmatrix}$
where $ A_1$ is a nonsingular matrix of dimension $n×n$ and $A_2$ is an arbitrary matrix of dimension $(m-n)×n$. Prove that $|A^+|_2leq|A^{-1}_1|_2$.



My idea of this problem:
In order to calculate the 2-norm, I calculate the eigenvalues of $(A^+)^*A^+$ and $(A^{-1}_1)^*A^{-1}_1$(which are $(AA^*)^{-1}$ and $(A_1A_1^*)^{-1}$ after simplifying). Now I do not know how to compare their eigenvalues.










share|cite|improve this question











$endgroup$












  • $begingroup$
    If $A_1$ is $n times n$ and $A_2$ is $(m-n) times n$ then would not A be $m times 2n$ the way you have defined it?
    $endgroup$
    – Wintermute
    Dec 18 '18 at 18:16
















1












$begingroup$


Suppose the $m×n$ matrix $A$ has the form $A=begin{pmatrix}
A_1 \
A_2
end{pmatrix}$
where $ A_1$ is a nonsingular matrix of dimension $n×n$ and $A_2$ is an arbitrary matrix of dimension $(m-n)×n$. Prove that $|A^+|_2leq|A^{-1}_1|_2$.



My idea of this problem:
In order to calculate the 2-norm, I calculate the eigenvalues of $(A^+)^*A^+$ and $(A^{-1}_1)^*A^{-1}_1$(which are $(AA^*)^{-1}$ and $(A_1A_1^*)^{-1}$ after simplifying). Now I do not know how to compare their eigenvalues.










share|cite|improve this question











$endgroup$












  • $begingroup$
    If $A_1$ is $n times n$ and $A_2$ is $(m-n) times n$ then would not A be $m times 2n$ the way you have defined it?
    $endgroup$
    – Wintermute
    Dec 18 '18 at 18:16














1












1








1





$begingroup$


Suppose the $m×n$ matrix $A$ has the form $A=begin{pmatrix}
A_1 \
A_2
end{pmatrix}$
where $ A_1$ is a nonsingular matrix of dimension $n×n$ and $A_2$ is an arbitrary matrix of dimension $(m-n)×n$. Prove that $|A^+|_2leq|A^{-1}_1|_2$.



My idea of this problem:
In order to calculate the 2-norm, I calculate the eigenvalues of $(A^+)^*A^+$ and $(A^{-1}_1)^*A^{-1}_1$(which are $(AA^*)^{-1}$ and $(A_1A_1^*)^{-1}$ after simplifying). Now I do not know how to compare their eigenvalues.










share|cite|improve this question











$endgroup$




Suppose the $m×n$ matrix $A$ has the form $A=begin{pmatrix}
A_1 \
A_2
end{pmatrix}$
where $ A_1$ is a nonsingular matrix of dimension $n×n$ and $A_2$ is an arbitrary matrix of dimension $(m-n)×n$. Prove that $|A^+|_2leq|A^{-1}_1|_2$.



My idea of this problem:
In order to calculate the 2-norm, I calculate the eigenvalues of $(A^+)^*A^+$ and $(A^{-1}_1)^*A^{-1}_1$(which are $(AA^*)^{-1}$ and $(A_1A_1^*)^{-1}$ after simplifying). Now I do not know how to compare their eigenvalues.







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 18 '18 at 12:23







Kristy

















asked Dec 18 '18 at 1:04









KristyKristy

454




454












  • $begingroup$
    If $A_1$ is $n times n$ and $A_2$ is $(m-n) times n$ then would not A be $m times 2n$ the way you have defined it?
    $endgroup$
    – Wintermute
    Dec 18 '18 at 18:16


















  • $begingroup$
    If $A_1$ is $n times n$ and $A_2$ is $(m-n) times n$ then would not A be $m times 2n$ the way you have defined it?
    $endgroup$
    – Wintermute
    Dec 18 '18 at 18:16
















$begingroup$
If $A_1$ is $n times n$ and $A_2$ is $(m-n) times n$ then would not A be $m times 2n$ the way you have defined it?
$endgroup$
– Wintermute
Dec 18 '18 at 18:16




$begingroup$
If $A_1$ is $n times n$ and $A_2$ is $(m-n) times n$ then would not A be $m times 2n$ the way you have defined it?
$endgroup$
– Wintermute
Dec 18 '18 at 18:16










1 Answer
1






active

oldest

votes


















1












$begingroup$

Since the columns of $A$ are independent,



$A^+=(A_1^*A_1+A_2^*A_2)^{-1}[A_1^*,A_2^*]$ and, therefore



$A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$.



Moreover $A_1^{-1}{A_1^{-1}}^*=(A_1^*A_1)^{-1}$.



Since $0_n<A_1^*A_1leq A_1^*A_1+A_2^*A_2$,



$lambda_{min}(A_1^*A_1)leq lambda_{min}(A_1^*A_1+A_2^*A_2)$ and



$lambda_{max}((A_1^*A_1)^{-1})geq lambda_{max}((A_1^*A_1+A_2^*A_2)^{-1})$ and we are done.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
    $endgroup$
    – Kristy
    Dec 19 '18 at 1:00










  • $begingroup$
    Write the product.
    $endgroup$
    – loup blanc
    Dec 19 '18 at 8:21











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044667%2fhow-to-prove-a-2-leq-a-1-1-2-in-the-question%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Since the columns of $A$ are independent,



$A^+=(A_1^*A_1+A_2^*A_2)^{-1}[A_1^*,A_2^*]$ and, therefore



$A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$.



Moreover $A_1^{-1}{A_1^{-1}}^*=(A_1^*A_1)^{-1}$.



Since $0_n<A_1^*A_1leq A_1^*A_1+A_2^*A_2$,



$lambda_{min}(A_1^*A_1)leq lambda_{min}(A_1^*A_1+A_2^*A_2)$ and



$lambda_{max}((A_1^*A_1)^{-1})geq lambda_{max}((A_1^*A_1+A_2^*A_2)^{-1})$ and we are done.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
    $endgroup$
    – Kristy
    Dec 19 '18 at 1:00










  • $begingroup$
    Write the product.
    $endgroup$
    – loup blanc
    Dec 19 '18 at 8:21
















1












$begingroup$

Since the columns of $A$ are independent,



$A^+=(A_1^*A_1+A_2^*A_2)^{-1}[A_1^*,A_2^*]$ and, therefore



$A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$.



Moreover $A_1^{-1}{A_1^{-1}}^*=(A_1^*A_1)^{-1}$.



Since $0_n<A_1^*A_1leq A_1^*A_1+A_2^*A_2$,



$lambda_{min}(A_1^*A_1)leq lambda_{min}(A_1^*A_1+A_2^*A_2)$ and



$lambda_{max}((A_1^*A_1)^{-1})geq lambda_{max}((A_1^*A_1+A_2^*A_2)^{-1})$ and we are done.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
    $endgroup$
    – Kristy
    Dec 19 '18 at 1:00










  • $begingroup$
    Write the product.
    $endgroup$
    – loup blanc
    Dec 19 '18 at 8:21














1












1








1





$begingroup$

Since the columns of $A$ are independent,



$A^+=(A_1^*A_1+A_2^*A_2)^{-1}[A_1^*,A_2^*]$ and, therefore



$A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$.



Moreover $A_1^{-1}{A_1^{-1}}^*=(A_1^*A_1)^{-1}$.



Since $0_n<A_1^*A_1leq A_1^*A_1+A_2^*A_2$,



$lambda_{min}(A_1^*A_1)leq lambda_{min}(A_1^*A_1+A_2^*A_2)$ and



$lambda_{max}((A_1^*A_1)^{-1})geq lambda_{max}((A_1^*A_1+A_2^*A_2)^{-1})$ and we are done.






share|cite|improve this answer









$endgroup$



Since the columns of $A$ are independent,



$A^+=(A_1^*A_1+A_2^*A_2)^{-1}[A_1^*,A_2^*]$ and, therefore



$A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$.



Moreover $A_1^{-1}{A_1^{-1}}^*=(A_1^*A_1)^{-1}$.



Since $0_n<A_1^*A_1leq A_1^*A_1+A_2^*A_2$,



$lambda_{min}(A_1^*A_1)leq lambda_{min}(A_1^*A_1+A_2^*A_2)$ and



$lambda_{max}((A_1^*A_1)^{-1})geq lambda_{max}((A_1^*A_1+A_2^*A_2)^{-1})$ and we are done.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 18 '18 at 18:07









loup blancloup blanc

24.1k21851




24.1k21851












  • $begingroup$
    why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
    $endgroup$
    – Kristy
    Dec 19 '18 at 1:00










  • $begingroup$
    Write the product.
    $endgroup$
    – loup blanc
    Dec 19 '18 at 8:21


















  • $begingroup$
    why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
    $endgroup$
    – Kristy
    Dec 19 '18 at 1:00










  • $begingroup$
    Write the product.
    $endgroup$
    – loup blanc
    Dec 19 '18 at 8:21
















$begingroup$
why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
$endgroup$
– Kristy
Dec 19 '18 at 1:00




$begingroup$
why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
$endgroup$
– Kristy
Dec 19 '18 at 1:00












$begingroup$
Write the product.
$endgroup$
– loup blanc
Dec 19 '18 at 8:21




$begingroup$
Write the product.
$endgroup$
– loup blanc
Dec 19 '18 at 8:21


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044667%2fhow-to-prove-a-2-leq-a-1-1-2-in-the-question%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...