How to prove $|A^+|_2leq|A^{-1}_1|_2$ in the question?
$begingroup$
Suppose the $m×n$ matrix $A$ has the form $A=begin{pmatrix}
A_1 \
A_2
end{pmatrix}$ where $ A_1$ is a nonsingular matrix of dimension $n×n$ and $A_2$ is an arbitrary matrix of dimension $(m-n)×n$. Prove that $|A^+|_2leq|A^{-1}_1|_2$.
My idea of this problem:
In order to calculate the 2-norm, I calculate the eigenvalues of $(A^+)^*A^+$ and $(A^{-1}_1)^*A^{-1}_1$(which are $(AA^*)^{-1}$ and $(A_1A_1^*)^{-1}$ after simplifying). Now I do not know how to compare their eigenvalues.
linear-algebra
$endgroup$
add a comment |
$begingroup$
Suppose the $m×n$ matrix $A$ has the form $A=begin{pmatrix}
A_1 \
A_2
end{pmatrix}$ where $ A_1$ is a nonsingular matrix of dimension $n×n$ and $A_2$ is an arbitrary matrix of dimension $(m-n)×n$. Prove that $|A^+|_2leq|A^{-1}_1|_2$.
My idea of this problem:
In order to calculate the 2-norm, I calculate the eigenvalues of $(A^+)^*A^+$ and $(A^{-1}_1)^*A^{-1}_1$(which are $(AA^*)^{-1}$ and $(A_1A_1^*)^{-1}$ after simplifying). Now I do not know how to compare their eigenvalues.
linear-algebra
$endgroup$
$begingroup$
If $A_1$ is $n times n$ and $A_2$ is $(m-n) times n$ then would not A be $m times 2n$ the way you have defined it?
$endgroup$
– Wintermute
Dec 18 '18 at 18:16
add a comment |
$begingroup$
Suppose the $m×n$ matrix $A$ has the form $A=begin{pmatrix}
A_1 \
A_2
end{pmatrix}$ where $ A_1$ is a nonsingular matrix of dimension $n×n$ and $A_2$ is an arbitrary matrix of dimension $(m-n)×n$. Prove that $|A^+|_2leq|A^{-1}_1|_2$.
My idea of this problem:
In order to calculate the 2-norm, I calculate the eigenvalues of $(A^+)^*A^+$ and $(A^{-1}_1)^*A^{-1}_1$(which are $(AA^*)^{-1}$ and $(A_1A_1^*)^{-1}$ after simplifying). Now I do not know how to compare their eigenvalues.
linear-algebra
$endgroup$
Suppose the $m×n$ matrix $A$ has the form $A=begin{pmatrix}
A_1 \
A_2
end{pmatrix}$ where $ A_1$ is a nonsingular matrix of dimension $n×n$ and $A_2$ is an arbitrary matrix of dimension $(m-n)×n$. Prove that $|A^+|_2leq|A^{-1}_1|_2$.
My idea of this problem:
In order to calculate the 2-norm, I calculate the eigenvalues of $(A^+)^*A^+$ and $(A^{-1}_1)^*A^{-1}_1$(which are $(AA^*)^{-1}$ and $(A_1A_1^*)^{-1}$ after simplifying). Now I do not know how to compare their eigenvalues.
linear-algebra
linear-algebra
edited Dec 18 '18 at 12:23
Kristy
asked Dec 18 '18 at 1:04
KristyKristy
454
454
$begingroup$
If $A_1$ is $n times n$ and $A_2$ is $(m-n) times n$ then would not A be $m times 2n$ the way you have defined it?
$endgroup$
– Wintermute
Dec 18 '18 at 18:16
add a comment |
$begingroup$
If $A_1$ is $n times n$ and $A_2$ is $(m-n) times n$ then would not A be $m times 2n$ the way you have defined it?
$endgroup$
– Wintermute
Dec 18 '18 at 18:16
$begingroup$
If $A_1$ is $n times n$ and $A_2$ is $(m-n) times n$ then would not A be $m times 2n$ the way you have defined it?
$endgroup$
– Wintermute
Dec 18 '18 at 18:16
$begingroup$
If $A_1$ is $n times n$ and $A_2$ is $(m-n) times n$ then would not A be $m times 2n$ the way you have defined it?
$endgroup$
– Wintermute
Dec 18 '18 at 18:16
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since the columns of $A$ are independent,
$A^+=(A_1^*A_1+A_2^*A_2)^{-1}[A_1^*,A_2^*]$ and, therefore
$A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$.
Moreover $A_1^{-1}{A_1^{-1}}^*=(A_1^*A_1)^{-1}$.
Since $0_n<A_1^*A_1leq A_1^*A_1+A_2^*A_2$,
$lambda_{min}(A_1^*A_1)leq lambda_{min}(A_1^*A_1+A_2^*A_2)$ and
$lambda_{max}((A_1^*A_1)^{-1})geq lambda_{max}((A_1^*A_1+A_2^*A_2)^{-1})$ and we are done.
$endgroup$
$begingroup$
why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
$endgroup$
– Kristy
Dec 19 '18 at 1:00
$begingroup$
Write the product.
$endgroup$
– loup blanc
Dec 19 '18 at 8:21
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044667%2fhow-to-prove-a-2-leq-a-1-1-2-in-the-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since the columns of $A$ are independent,
$A^+=(A_1^*A_1+A_2^*A_2)^{-1}[A_1^*,A_2^*]$ and, therefore
$A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$.
Moreover $A_1^{-1}{A_1^{-1}}^*=(A_1^*A_1)^{-1}$.
Since $0_n<A_1^*A_1leq A_1^*A_1+A_2^*A_2$,
$lambda_{min}(A_1^*A_1)leq lambda_{min}(A_1^*A_1+A_2^*A_2)$ and
$lambda_{max}((A_1^*A_1)^{-1})geq lambda_{max}((A_1^*A_1+A_2^*A_2)^{-1})$ and we are done.
$endgroup$
$begingroup$
why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
$endgroup$
– Kristy
Dec 19 '18 at 1:00
$begingroup$
Write the product.
$endgroup$
– loup blanc
Dec 19 '18 at 8:21
add a comment |
$begingroup$
Since the columns of $A$ are independent,
$A^+=(A_1^*A_1+A_2^*A_2)^{-1}[A_1^*,A_2^*]$ and, therefore
$A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$.
Moreover $A_1^{-1}{A_1^{-1}}^*=(A_1^*A_1)^{-1}$.
Since $0_n<A_1^*A_1leq A_1^*A_1+A_2^*A_2$,
$lambda_{min}(A_1^*A_1)leq lambda_{min}(A_1^*A_1+A_2^*A_2)$ and
$lambda_{max}((A_1^*A_1)^{-1})geq lambda_{max}((A_1^*A_1+A_2^*A_2)^{-1})$ and we are done.
$endgroup$
$begingroup$
why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
$endgroup$
– Kristy
Dec 19 '18 at 1:00
$begingroup$
Write the product.
$endgroup$
– loup blanc
Dec 19 '18 at 8:21
add a comment |
$begingroup$
Since the columns of $A$ are independent,
$A^+=(A_1^*A_1+A_2^*A_2)^{-1}[A_1^*,A_2^*]$ and, therefore
$A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$.
Moreover $A_1^{-1}{A_1^{-1}}^*=(A_1^*A_1)^{-1}$.
Since $0_n<A_1^*A_1leq A_1^*A_1+A_2^*A_2$,
$lambda_{min}(A_1^*A_1)leq lambda_{min}(A_1^*A_1+A_2^*A_2)$ and
$lambda_{max}((A_1^*A_1)^{-1})geq lambda_{max}((A_1^*A_1+A_2^*A_2)^{-1})$ and we are done.
$endgroup$
Since the columns of $A$ are independent,
$A^+=(A_1^*A_1+A_2^*A_2)^{-1}[A_1^*,A_2^*]$ and, therefore
$A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$.
Moreover $A_1^{-1}{A_1^{-1}}^*=(A_1^*A_1)^{-1}$.
Since $0_n<A_1^*A_1leq A_1^*A_1+A_2^*A_2$,
$lambda_{min}(A_1^*A_1)leq lambda_{min}(A_1^*A_1+A_2^*A_2)$ and
$lambda_{max}((A_1^*A_1)^{-1})geq lambda_{max}((A_1^*A_1+A_2^*A_2)^{-1})$ and we are done.
answered Dec 18 '18 at 18:07
loup blancloup blanc
24.1k21851
24.1k21851
$begingroup$
why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
$endgroup$
– Kristy
Dec 19 '18 at 1:00
$begingroup$
Write the product.
$endgroup$
– loup blanc
Dec 19 '18 at 8:21
add a comment |
$begingroup$
why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
$endgroup$
– Kristy
Dec 19 '18 at 1:00
$begingroup$
Write the product.
$endgroup$
– loup blanc
Dec 19 '18 at 8:21
$begingroup$
why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
$endgroup$
– Kristy
Dec 19 '18 at 1:00
$begingroup$
why $A^+{A^+}^*=(A_1^*A_1+A_2^*A_2)^{-1}$?
$endgroup$
– Kristy
Dec 19 '18 at 1:00
$begingroup$
Write the product.
$endgroup$
– loup blanc
Dec 19 '18 at 8:21
$begingroup$
Write the product.
$endgroup$
– loup blanc
Dec 19 '18 at 8:21
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044667%2fhow-to-prove-a-2-leq-a-1-1-2-in-the-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
If $A_1$ is $n times n$ and $A_2$ is $(m-n) times n$ then would not A be $m times 2n$ the way you have defined it?
$endgroup$
– Wintermute
Dec 18 '18 at 18:16