Language involving irrational number is not a CFL












9












$begingroup$


I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = {a^ib^j: i leq j gamma, igeq 0, jgeq 1}$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?



In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.



This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.



I would really appreciate any help, or nudges in the right direction. Thank you!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Have you tried applying Parikh’s theorem?
    $endgroup$
    – Yuval Filmus
    Mar 20 at 15:44












  • $begingroup$
    Why not show that it’s not semilinear directly? Use the definition.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 15:53






  • 4




    $begingroup$
    Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
    $endgroup$
    – Hendrik Jan
    Mar 20 at 19:36












  • $begingroup$
    @HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
    $endgroup$
    – user101859
    Mar 20 at 22:42










  • $begingroup$
    I appreciate what you were trying to do and your good intentions, but please don't destroy the question by editing it to hide the question (even for a few days). Thank you. P.S. Thank you for crediting the source of the problem!
    $endgroup$
    – D.W.
    Mar 20 at 23:14
















9












$begingroup$


I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = {a^ib^j: i leq j gamma, igeq 0, jgeq 1}$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?



In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.



This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.



I would really appreciate any help, or nudges in the right direction. Thank you!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Have you tried applying Parikh’s theorem?
    $endgroup$
    – Yuval Filmus
    Mar 20 at 15:44












  • $begingroup$
    Why not show that it’s not semilinear directly? Use the definition.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 15:53






  • 4




    $begingroup$
    Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
    $endgroup$
    – Hendrik Jan
    Mar 20 at 19:36












  • $begingroup$
    @HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
    $endgroup$
    – user101859
    Mar 20 at 22:42










  • $begingroup$
    I appreciate what you were trying to do and your good intentions, but please don't destroy the question by editing it to hide the question (even for a few days). Thank you. P.S. Thank you for crediting the source of the problem!
    $endgroup$
    – D.W.
    Mar 20 at 23:14














9












9








9


1



$begingroup$


I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = {a^ib^j: i leq j gamma, igeq 0, jgeq 1}$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?



In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.



This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.



I would really appreciate any help, or nudges in the right direction. Thank you!










share|cite|improve this question











$endgroup$




I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = {a^ib^j: i leq j gamma, igeq 0, jgeq 1}$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?



In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.



This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.



I would really appreciate any help, or nudges in the right direction. Thank you!







formal-languages automata context-free






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 20 at 23:12









D.W.

102k12127291




102k12127291










asked Mar 20 at 15:25







user101859



















  • $begingroup$
    Have you tried applying Parikh’s theorem?
    $endgroup$
    – Yuval Filmus
    Mar 20 at 15:44












  • $begingroup$
    Why not show that it’s not semilinear directly? Use the definition.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 15:53






  • 4




    $begingroup$
    Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
    $endgroup$
    – Hendrik Jan
    Mar 20 at 19:36












  • $begingroup$
    @HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
    $endgroup$
    – user101859
    Mar 20 at 22:42










  • $begingroup$
    I appreciate what you were trying to do and your good intentions, but please don't destroy the question by editing it to hide the question (even for a few days). Thank you. P.S. Thank you for crediting the source of the problem!
    $endgroup$
    – D.W.
    Mar 20 at 23:14


















  • $begingroup$
    Have you tried applying Parikh’s theorem?
    $endgroup$
    – Yuval Filmus
    Mar 20 at 15:44












  • $begingroup$
    Why not show that it’s not semilinear directly? Use the definition.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 15:53






  • 4




    $begingroup$
    Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
    $endgroup$
    – Hendrik Jan
    Mar 20 at 19:36












  • $begingroup$
    @HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
    $endgroup$
    – user101859
    Mar 20 at 22:42










  • $begingroup$
    I appreciate what you were trying to do and your good intentions, but please don't destroy the question by editing it to hide the question (even for a few days). Thank you. P.S. Thank you for crediting the source of the problem!
    $endgroup$
    – D.W.
    Mar 20 at 23:14
















$begingroup$
Have you tried applying Parikh’s theorem?
$endgroup$
– Yuval Filmus
Mar 20 at 15:44






$begingroup$
Have you tried applying Parikh’s theorem?
$endgroup$
– Yuval Filmus
Mar 20 at 15:44














$begingroup$
Why not show that it’s not semilinear directly? Use the definition.
$endgroup$
– Yuval Filmus
Mar 20 at 15:53




$begingroup$
Why not show that it’s not semilinear directly? Use the definition.
$endgroup$
– Yuval Filmus
Mar 20 at 15:53




4




4




$begingroup$
Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
$endgroup$
– Hendrik Jan
Mar 20 at 19:36






$begingroup$
Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
$endgroup$
– Hendrik Jan
Mar 20 at 19:36














$begingroup$
@HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
$endgroup$
– user101859
Mar 20 at 22:42




$begingroup$
@HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
$endgroup$
– user101859
Mar 20 at 22:42












$begingroup$
I appreciate what you were trying to do and your good intentions, but please don't destroy the question by editing it to hide the question (even for a few days). Thank you. P.S. Thank you for crediting the source of the problem!
$endgroup$
– D.W.
Mar 20 at 23:14




$begingroup$
I appreciate what you were trying to do and your good intentions, but please don't destroy the question by editing it to hide the question (even for a few days). Thank you. P.S. Thank you for crediting the source of the problem!
$endgroup$
– D.W.
Mar 20 at 23:14










2 Answers
2






active

oldest

votes


















6












$begingroup$

According to Parikh's theorem, if $L$ were context-free then the set $M = {(a,b) : a leq gamma b }$ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbb{N} u_1 + cdots + mathbb{N} u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^{(1)},ldots,S^{(m)}$, and define $g = max(g(S^{(1)}),ldots,g(S^{(m)})) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup { a/b : (a,b) in M } = gamma$.





When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
{ (a,b) : a leq tfrac{s}{t} b } = bigcup_{a=0}^{s-1} (a,lceil tfrac{t}{s} a rceil) + mathbb{N} (s,t) + mathbb{N} (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfrac{s}{t} b$ (since $s = tfrac{s}{t} t$). Conversely, suppose that $a leq frac{s}{t} b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq frac{s}{t}b < s$). Since $a leq frac{s}{t} b$, necessarily $b geq lceil tfrac{t}{s} a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfrac{t}{s} a rceil)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – user101859
    Mar 20 at 18:57












  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 19:09



















4












$begingroup$

Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfrac{a_1}{b_1}ltdfrac{a_2}{b_2}ltdfrac{a_3}{b_3}ltcdots ltgamma$ such that $dfrac{a_i}{b_i}$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.





It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^{a_p}b^{b_p}$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.




  • If $t_b=0$ or $dfrac{t_a}{t_b}gtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfrac{t_a}{t_b}ltgamma$. Since $t_b<b_p$, $dfrac{t_a}{t_b}lt dfrac{a_p}{b_p}$. Hence,
    $dfrac{a_p-t_a}{b_p-t_b}>dfrac{a_p}{b_p}$
    Since $b_p-t_b<b_p$, $dfrac{a_p-t_a}{b_p-t_b}>gamma,$
    which says that $s_0notin L$.


The above contradiction shows that $L$ cannot be context-free.





Here are two related easier exercises.



Exercise 1. Show that $L_gamma={a^{lfloor i gammarfloor}: iinBbb N}$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma={a^ib^j: i leq j gamma, i ge0, jge 0}$ is context-free where $gamma$ is a rational number.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    Mar 20 at 19:45












  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 20:03










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    Mar 20 at 20:21













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "419"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105836%2flanguage-involving-irrational-number-is-not-a-cfl%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown
























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

According to Parikh's theorem, if $L$ were context-free then the set $M = {(a,b) : a leq gamma b }$ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbb{N} u_1 + cdots + mathbb{N} u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^{(1)},ldots,S^{(m)}$, and define $g = max(g(S^{(1)}),ldots,g(S^{(m)})) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup { a/b : (a,b) in M } = gamma$.





When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
{ (a,b) : a leq tfrac{s}{t} b } = bigcup_{a=0}^{s-1} (a,lceil tfrac{t}{s} a rceil) + mathbb{N} (s,t) + mathbb{N} (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfrac{s}{t} b$ (since $s = tfrac{s}{t} t$). Conversely, suppose that $a leq frac{s}{t} b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq frac{s}{t}b < s$). Since $a leq frac{s}{t} b$, necessarily $b geq lceil tfrac{t}{s} a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfrac{t}{s} a rceil)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – user101859
    Mar 20 at 18:57












  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 19:09
















6












$begingroup$

According to Parikh's theorem, if $L$ were context-free then the set $M = {(a,b) : a leq gamma b }$ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbb{N} u_1 + cdots + mathbb{N} u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^{(1)},ldots,S^{(m)}$, and define $g = max(g(S^{(1)}),ldots,g(S^{(m)})) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup { a/b : (a,b) in M } = gamma$.





When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
{ (a,b) : a leq tfrac{s}{t} b } = bigcup_{a=0}^{s-1} (a,lceil tfrac{t}{s} a rceil) + mathbb{N} (s,t) + mathbb{N} (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfrac{s}{t} b$ (since $s = tfrac{s}{t} t$). Conversely, suppose that $a leq frac{s}{t} b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq frac{s}{t}b < s$). Since $a leq frac{s}{t} b$, necessarily $b geq lceil tfrac{t}{s} a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfrac{t}{s} a rceil)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – user101859
    Mar 20 at 18:57












  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 19:09














6












6








6





$begingroup$

According to Parikh's theorem, if $L$ were context-free then the set $M = {(a,b) : a leq gamma b }$ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbb{N} u_1 + cdots + mathbb{N} u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^{(1)},ldots,S^{(m)}$, and define $g = max(g(S^{(1)}),ldots,g(S^{(m)})) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup { a/b : (a,b) in M } = gamma$.





When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
{ (a,b) : a leq tfrac{s}{t} b } = bigcup_{a=0}^{s-1} (a,lceil tfrac{t}{s} a rceil) + mathbb{N} (s,t) + mathbb{N} (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfrac{s}{t} b$ (since $s = tfrac{s}{t} t$). Conversely, suppose that $a leq frac{s}{t} b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq frac{s}{t}b < s$). Since $a leq frac{s}{t} b$, necessarily $b geq lceil tfrac{t}{s} a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfrac{t}{s} a rceil)$.






share|cite|improve this answer









$endgroup$



According to Parikh's theorem, if $L$ were context-free then the set $M = {(a,b) : a leq gamma b }$ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbb{N} u_1 + cdots + mathbb{N} u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^{(1)},ldots,S^{(m)}$, and define $g = max(g(S^{(1)}),ldots,g(S^{(m)})) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup { a/b : (a,b) in M } = gamma$.





When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
{ (a,b) : a leq tfrac{s}{t} b } = bigcup_{a=0}^{s-1} (a,lceil tfrac{t}{s} a rceil) + mathbb{N} (s,t) + mathbb{N} (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfrac{s}{t} b$ (since $s = tfrac{s}{t} t$). Conversely, suppose that $a leq frac{s}{t} b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq frac{s}{t}b < s$). Since $a leq frac{s}{t} b$, necessarily $b geq lceil tfrac{t}{s} a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfrac{t}{s} a rceil)$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 20 at 18:02









Yuval FilmusYuval Filmus

195k14184347




195k14184347












  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – user101859
    Mar 20 at 18:57












  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 19:09


















  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – user101859
    Mar 20 at 18:57












  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 19:09
















$begingroup$
Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
$endgroup$
– user101859
Mar 20 at 18:57






$begingroup$
Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
$endgroup$
– user101859
Mar 20 at 18:57














$begingroup$
No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
$endgroup$
– Yuval Filmus
Mar 20 at 19:09




$begingroup$
No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
$endgroup$
– Yuval Filmus
Mar 20 at 19:09











4












$begingroup$

Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfrac{a_1}{b_1}ltdfrac{a_2}{b_2}ltdfrac{a_3}{b_3}ltcdots ltgamma$ such that $dfrac{a_i}{b_i}$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.





It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^{a_p}b^{b_p}$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.




  • If $t_b=0$ or $dfrac{t_a}{t_b}gtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfrac{t_a}{t_b}ltgamma$. Since $t_b<b_p$, $dfrac{t_a}{t_b}lt dfrac{a_p}{b_p}$. Hence,
    $dfrac{a_p-t_a}{b_p-t_b}>dfrac{a_p}{b_p}$
    Since $b_p-t_b<b_p$, $dfrac{a_p-t_a}{b_p-t_b}>gamma,$
    which says that $s_0notin L$.


The above contradiction shows that $L$ cannot be context-free.





Here are two related easier exercises.



Exercise 1. Show that $L_gamma={a^{lfloor i gammarfloor}: iinBbb N}$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma={a^ib^j: i leq j gamma, i ge0, jge 0}$ is context-free where $gamma$ is a rational number.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    Mar 20 at 19:45












  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 20:03










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    Mar 20 at 20:21


















4












$begingroup$

Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfrac{a_1}{b_1}ltdfrac{a_2}{b_2}ltdfrac{a_3}{b_3}ltcdots ltgamma$ such that $dfrac{a_i}{b_i}$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.





It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^{a_p}b^{b_p}$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.




  • If $t_b=0$ or $dfrac{t_a}{t_b}gtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfrac{t_a}{t_b}ltgamma$. Since $t_b<b_p$, $dfrac{t_a}{t_b}lt dfrac{a_p}{b_p}$. Hence,
    $dfrac{a_p-t_a}{b_p-t_b}>dfrac{a_p}{b_p}$
    Since $b_p-t_b<b_p$, $dfrac{a_p-t_a}{b_p-t_b}>gamma,$
    which says that $s_0notin L$.


The above contradiction shows that $L$ cannot be context-free.





Here are two related easier exercises.



Exercise 1. Show that $L_gamma={a^{lfloor i gammarfloor}: iinBbb N}$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma={a^ib^j: i leq j gamma, i ge0, jge 0}$ is context-free where $gamma$ is a rational number.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    Mar 20 at 19:45












  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 20:03










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    Mar 20 at 20:21
















4












4








4





$begingroup$

Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfrac{a_1}{b_1}ltdfrac{a_2}{b_2}ltdfrac{a_3}{b_3}ltcdots ltgamma$ such that $dfrac{a_i}{b_i}$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.





It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^{a_p}b^{b_p}$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.




  • If $t_b=0$ or $dfrac{t_a}{t_b}gtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfrac{t_a}{t_b}ltgamma$. Since $t_b<b_p$, $dfrac{t_a}{t_b}lt dfrac{a_p}{b_p}$. Hence,
    $dfrac{a_p-t_a}{b_p-t_b}>dfrac{a_p}{b_p}$
    Since $b_p-t_b<b_p$, $dfrac{a_p-t_a}{b_p-t_b}>gamma,$
    which says that $s_0notin L$.


The above contradiction shows that $L$ cannot be context-free.





Here are two related easier exercises.



Exercise 1. Show that $L_gamma={a^{lfloor i gammarfloor}: iinBbb N}$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma={a^ib^j: i leq j gamma, i ge0, jge 0}$ is context-free where $gamma$ is a rational number.






share|cite|improve this answer











$endgroup$



Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfrac{a_1}{b_1}ltdfrac{a_2}{b_2}ltdfrac{a_3}{b_3}ltcdots ltgamma$ such that $dfrac{a_i}{b_i}$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.





It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^{a_p}b^{b_p}$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.




  • If $t_b=0$ or $dfrac{t_a}{t_b}gtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfrac{t_a}{t_b}ltgamma$. Since $t_b<b_p$, $dfrac{t_a}{t_b}lt dfrac{a_p}{b_p}$. Hence,
    $dfrac{a_p-t_a}{b_p-t_b}>dfrac{a_p}{b_p}$
    Since $b_p-t_b<b_p$, $dfrac{a_p-t_a}{b_p-t_b}>gamma,$
    which says that $s_0notin L$.


The above contradiction shows that $L$ cannot be context-free.





Here are two related easier exercises.



Exercise 1. Show that $L_gamma={a^{lfloor i gammarfloor}: iinBbb N}$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma={a^ib^j: i leq j gamma, i ge0, jge 0}$ is context-free where $gamma$ is a rational number.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Mar 20 at 20:20

























answered Mar 20 at 19:27









Apass.JackApass.Jack

13.3k1939




13.3k1939












  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    Mar 20 at 19:45












  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 20:03










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    Mar 20 at 20:21




















  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    Mar 20 at 19:45












  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    Mar 20 at 20:03










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    Mar 20 at 20:21


















$begingroup$
The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
$endgroup$
– Apass.Jack
Mar 20 at 19:45






$begingroup$
The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
$endgroup$
– Apass.Jack
Mar 20 at 19:45














$begingroup$
The usual construction is to take convergents of the continued fraction.
$endgroup$
– Yuval Filmus
Mar 20 at 20:03




$begingroup$
The usual construction is to take convergents of the continued fraction.
$endgroup$
– Yuval Filmus
Mar 20 at 20:03












$begingroup$
@YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
$endgroup$
– Apass.Jack
Mar 20 at 20:21






$begingroup$
@YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
$endgroup$
– Apass.Jack
Mar 20 at 20:21




















draft saved

draft discarded




















































Thanks for contributing an answer to Computer Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105836%2flanguage-involving-irrational-number-is-not-a-cfl%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...